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SUMMARY

A detailed study is presented of one-dimensional, inviscid,

nozzle flows with coupled vibrational and dissociational nonequilibrium.

The ordinary coupled differential equations are integrated using the

fourth order Runge-Kutta method on an IBM-7090 computer for several

reservoir conditions. The method is used to predict the flow properties

in the UTIAS 11" x 15" Hypersonic Shock Tunnel nozzle system. It

is shown that the flow quantities are strongly dependent on the vibra-

tional and dissociational models that are used in the analyses.

It was assumed that the vibrational state of the gas may be

represented by a single vibrational temperature and that the effect of

vibrational nonequilibrium on rates of dissociation may be taken into

account by the introduction of a parameter which has the dimensions of

temperature and which gives a higher probability for dissociation from

higher vibrational energy levels. The dependence of this parameter on

translational temperature is derived. However, in the calculations, an

averaged constant value of this parameter is used as a simplification.

The effect of dissociational nonequilibrium on vibrational relaxation is

to modify the classical Landau-Teller equation by additional terms

which take into account the average energy lost or gained due to

dissociation and recombination. A qualitative study of the effects of

the atom-molecule exchange reaction and relaxation from a higher to

lower vibrationally excited state on the vibrational relaxation is carried

out by shortening the vibrational relaxation times from those measured

behind normal shocks.

The analysis has been successfully applied to predict the

hypersonic nozzle test-section conditions for a newly developed UTIAS

--_1_ A_1"I_--_4-4 .... 4-nl._-{r* n_t'_'_g_ {('%1 _ mg:_111_ing Innnl _tnm concentrat ions

in a dissociating oxygen flow.
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N OT AT iON

A
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E v, E
v

Ej

El' E2 '_

Eoo

nozzle area ratio or He!mholtz free energy function.

nozzle area at the throat.

Helmholtz functions for thermodynamic subsystems con-

sisting of translational, rotational and vibrational degrees of

freedom respectively, given in Eqs. (A2), (A3).

Constants defined in Eqs. (B70), 0371).

constant in the rate expressions for dissociation Eq. (61) and

vibration Eqo 'Q]_,_-_o

frozen and partially frozen sound speeds.

stoichiometric coefficient for species i in the reaction equation

(36).

constant in rate ex-pression for vibration Eq. (81).

stoichiometric coefficient for species i in reaction equation (36).

constants in rate exoression for vibration Eq. (DIi).

constant in the e_pression for dissociation rate Eq. (BI3).

dis soc iation energy°

constants in rate expression for dissociation Eq. (DI0).

Total internal energy.

vibrational energies evaluated at translational and vibrational

temperatures Eqs. (74), (75)°

activation energy for dissociation.

energy of vibra:ional l_vel j

average vibrational energies lost in dissociation by molecule-

molecule, atom-molecule collisions and the sum of these

defined in Eqs. (B44)0 (B45), 0346).

vibrational energ 7 evaluated at translational temperature.
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average vibrational energies gained in recombination due to
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these defined in Eqs. (B48), {B49), (B51).

partial specific quantities due to species i, defined in Eq. (6).

specific Gibbs potentials for atoms and molecules defined Lu

Eqs. (A27), (A28).

probability or statistical weight of ground energy level, g=j
( j = 1 atoms, j = 2 molecules)

specific enthalpy or Planck constant.

thermodynamic fluxes for vibration and dissociation.

vibrational energy level number.

constants defined in Eqs. (A29), (A30).

equilibrium constant Eq. (B85).

Boltzmann constant.

reaction rates for reactions in Eq. (39}, (48), (49).

dissociational and recombinational rate constants.

rate constant for dissociation due to atom-molecule and

molecule-molecule collisions respectively.

rate constants for dissociation fram or reegmbination to

vibrational level j .
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state.

expression defined in Eq. (B38).
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I. INTRODUCTION

At present, expansion flows of reacting gases at high temp-

eratures are calculated with the following gas models, which are listed in

order of increasing complexity:

I. Ideal or Lighthill dissociating gas for pure diatomic gases,

where vibration is considered to be excited to ltalf its classical value, with

dissociational nonequilibrium; (e. g. Refs. 1-4).

II. Vibration in equilibrium with translation and rotation, and

with dissociational nonequilibrium (e. g. Refs. 5-12).

III. Simultaneous and independent vibrational and dissociational

nonequilibrium. (Refs. 13-17).

In all these calculations, the vibrational relaxation times

and dissociational and recombinational rate constants used are those deter-

mined behind normal shocks. The vibrational relaxation times are deter-

mined in the absence of dissociation, while dissociational and recombina-

tional rate constants correspond to a situation where the vibration reaches

equilibrium with translation. The modification of the rate constants in the

dissociational rate equation, when vibration has not reached equilibrium with

translation, was considered in Ref. 18. Modification of this type was first

used for flows behind normal shocks by Hammerling, Teare, Kivel (Ref. 19).
This model was further extended to take into account the inverse effect of

dissociational nonequilibrium on vibrational relaxation, for flow behind normal

shocks by Treanor and Marrone (Refs. 20-22).

In addition, recent experiments in nozzle expansion flows

(Ref. 23) appear to indicate that the vibrational relaxation times calculated

by using the classical Landau-Teller model may be shorter in such flows.

compared with those behind normal shocks. Consequently, a realistic gas
model has to take into account all of these factors.

Glass and Takano (Ref. 5), in their calculations of expansion

flow of dissociated oxygen around a corner with model (II), found the occurr-

ence of a deexCitation shock behind the expansion fan and noted that this might

not have occurred if a proper vibrational relaxation rate equation had been
used.

Also, a probe has been developed at UTIAS for direct measure

ment of atomic mass fraction in UTIAS hypersonic shock tunnel. Since the

coupling of vibrational and dissociational nonequilibrium will have an important

effect on the flow properties of the gas in the test section, in particular on the

frozen atomic mass fraction, it is proposed to consider the effect on expansion

flows in nozzles to give a realistic theoretical estimate of the flow properties
in the test section.



o THERMODYNAMIC CONSIDERATIONS

In dealing with any nonequilibrium system, the postulate cf

local equilibrium is used. This postulate states:

Postulate I

"For a system in which irreversible processes are taking

place, all thermodynamic functions of state exist for each element of the

system. These thermodynamic quantities for the nonequilibrium system are
the same functions of the local state variables as the corresponding equili-

brium thermodynamic quantities". (Ref. 24).

For a gaseous system consisting of r chemical components

the fundamental state variables may be taken as the mass density )O of a

volume element dV, the partial mass densities _ of the r chemical

components giving the composition of this volume and the specific internal

energy e of this volume element.- We

¢

For a nonequilibrium system

and on time _ i.e.

have, of course:

f ., (i)

p depend on the _position _" in space

d-- eC_ tfl (2)

:j (3)

f ___ f(i_¢,) (4)

Now the postulate of local equilibrium says that all thermodynamic quantities

for a nonequilibrium system may be defined by the same functional dependence

on f , f_ , e as is given by measurements on equilibrium systems. For
example, the local temperature T ( _', 2" ) may be defined by the same funcl:on

).T ( _, e ) as in equilibrium, and so is the local pressure p ( _ The
specific entropy S is defined by the GibbWs equation

where fl_' is the chemical potential or partial specific Gibb_s free energy of
component i.

Further the partial specific quantities O_' in an arbitrary volume elemenr

dv of a nonequilibrium system are defined by the equilibrium relation

_ (6)

where G represents any extensive quantity of the volume element dv and mi

is the mass of component i in dv. From this relation, one obtains for the

relations between the specific quantities

('7)

2



e--T_%

(8)

(9)

(10)

At this point it is necessary to consider the meaning of

temperature for a system in simultaneous vibrational and dissociational

nonequilibrium. For simplicity, consider the case of a dissociating pure

diatomic gas such that the system consists of a binary mixture of atoms

and molecules. For such a mixture, the specific internal energy e, temper-

ature T and atomic mass fraction gX' are related in thermodynamic

equilibrium through

where R is the gas constant referred to the diatomic gas.-and is the

vibrational energy which can be expressed for equilibrium in terms of T by

(13)

and _ , A are the characteristic temperatures for vibration and disso-

ciation/respectively. In the case Of vibrational nonequilibrium, the vibra-

tional energy _zv cannot be written so explicitly in terms of the tempera-

ture T and may have to be treated as one of the independent variables.

Under the above postulate, the local temperature will be defined by Eq. (12)

along with Eq. (13) for the vibrational energy at equilibrium, or one may

write T as the solution of the equation

(14)

where Z = (_v,_" . The three terms in Eq. (12) may be identified as the

3



contributions to the energy from translational-rotational, vibrational and

dissociational degrees of freedom of the whole system. Thus Eq. (14) will

imply that in the definition of temperature, the dissociative part of the

energy need not be considered. If _v is taken as an independent parameter

for vibrational nonequilibrium, one may further define a temperature

2

(15)2- f=

Ifthe vibrational contribution _,b to the total specific

internal energy _ can be e_xpressed in terms of _, defined by Eq. (13)

with the same T as in Eq. (12), then the temperatures defined by Eqs. (14)

and (15) become identical. This is the case when there is vibrational equili-

brium but dissociational nonequilibrium. When evl b cannot be so expressed,

the temperature defined by Eqs. (14) and (15) will be different, and according

to the postulate I, the temperature defined by Eq. (14) has to be taken as the

proper one. Eq. (13) can also be solved for another temperature. Let the

temperatures obtained as solutions of Eqs. (13), (14) and (15) be denoted by

T v , T ! and T t. In thermodynamic equilibrium the relation between

pressure, density and temperature is

p = pR T(/+oV (16)

By using the three different temperatures, one will get three different

pressures Pv ' _D/' _)_ respectively.
Which of these pairs 6_'T, p, are to be used in Eqs. (5), (9), (I0), (ll)?

Wood and Kirkwood (Ref. 25) circumvented this difficulty

by modifying the postulate I as follows:-

"The assumption of local thermodynamic equilibrium within classes of the

degrees of freedom of the system is made, but it is supposed that the attain-

ment of equilibrium between these classes is governed by rate processes

which can be stated in terms of state variables characterizing the partial

equilibrium of various classes. The assumption of equilibrium within each

class means that (classically speaking) a Boltzmann distribution exists for

each and consequently a temperature and entropy, as well as energy, may
be defined for each class". For a further discussion of some of these points

consult pp's 165-170 of Ref. 43.

It is assumed in this analysis, that the translational degrees

of freedom of all species constitute a single class and the corresponding

temperature, energy, entropy and chemical potential T I ' _' "_i ' _/!
satisfy Eq. (5) i. e.

(17)

4



whereas the equilibrium states of all other classes, called internal classes,

are assumed to be specified by their respective temperatures 7_ ( li >i _')

and the composition variables _ alone, such that for these classes Eq.

(5) may be written as ,/

Thus for the total energy change de of the system Eqs. (17) and (18) yield

de=Z d&
n

(19)

Since the pressure p enters only in Eq. (17) for translational degrees of

freedom, the translational temperature T t and the corresponding pressure

are the set to be used in Eq. (16). The rate processes for the
attainment of equilibrium between these various classes are taken to be of
the form

= (n >IzJ (20)at ¥!

where Qn is a function of the local thermodynamic state. These other internal

classes may be taken as rotational and vibrational degrees of freedom while

the chemical nonequilibrium is taken to be described by

d(_) _, _ (21)

dt

It was pointed out by Wood and Kirkwood, that this theory is not a micro-

scopic one and this, does not provide a recipe for classification of the degrees

-_ _.... _^_ m_o c1_f_+_nn i q tn be done independently of this theory.

For example, the above classification of translational and internal degrees

of freedom as separate classes may be considered to be obtained from a

statistical description of the various modes of energy storage. Helms

(Ref. 16) pointed out that for a vibrating, dissociating gas, to specify the

properties of the gas completely, it is necessary to specify the internal

energy as in Eq. (12) with _v as an additional independent variable, together

with the equation of state (16), where T is the translational temperature.

This implies that the pressure of the gas comes from translational motion

only. Starting with these two equations and the differential flow relations,

he shows that the entropy S is an exact differential of the variables Tt, 19 ,

O_---#_a#,_/p .,,_v: _V=L/-_(,)_v _,; For adiabatic flow, the entropy change due
to the irreversible relaxation processes was shown to be

- '7Tt ) -/-dcx' p(:;_' :' - " _ (22)
5



Now, when there are two heat reservoirs at temperatures
T1 and T2 and an energy fl©w belween them such that system _I _changes its
energy by de, then the overall entropy increase is

Helms pointed out that the :relaxation prccess is analogous to heat f'i.o_,

energy being interchanged betweeo "systems of vibrations at temperature

T V "- "systems of trans!a*i_ra! molions at temperature T, " and the

"chemical system" at a chemical temperature fQ_ O__Jf_/-e-$,'*'.J 7 -!

But, this is exact only for vibratic, nal relaxation without reaction, a_d net

when reaction is occurring. This is so., since in the case ef reaction

occurring, the chemical temperature is dependent cn T v as well as

T t .
Another important point brought cut in Helm's analysis is the relation be-
tween vibrational[ relaxation rate and rate of chemical reaction. The righ[

two roduct s.
hand side of Eqo (22) is seen to be composed of the sum of de p and do(
In the notation of irreversible thermodynamics (Refo 24), _

are "Fluxes". ( _,v_ _.- ) and the coefficients of _, and d_ in Eq. (22)
are the co'rresponding forces (Xv, Xc) and the theory yields a relation be-

tween _. :_ d_v and _-- _ , ' " "known as the Onsager reciprocal re!a-
t ¢/_-

tion, namely,

where the subscript eqo means that the decivatives are taken at equilibriumo

Eschenroeder (Ref° 26), uses the concept of chemical temperature, namely

for vibrational equilibrium and chemical nonequilibrium te evaluate entropy

rise by the equation

aS----- dec ( -/-'_t - +) (26)

where _¢ is the heat released or absorbed by the reaction for the gas

model of Lighthi]l, For this model, Eq. (25) is written as

6



where

and

(28)

(29)

Pz_ being the characteristic dissociation density.

Mates and Weatherstone (Ref. 27) examined the justification for using the

concept of multiple temperatures from a classical thermodynamic point of

view, to reconciliate the analyses of Heims and Eschenroeder. They conclude

that the classical thermodynamic temperature can sometimes be used to

characterize a particular degree of freedom9 such as vibration, even if it is

not in equilibrium with the other degrees of freedom. But the same is not

true with chemical temperature, except for chemical systems in which the

reactant and products have equal constant volume mass specific heats. An

example of such a system is the ideal dissociating gas of Lighthill.

From all these analyses it would appear that for a gas in

chemical and thermal nonequilibrium, some use of statistical thermodyna-

mics is necessary befor_ one can use the classical thermodynamic relations

involving only macroscopic variables. For example, the classification of

subsystems in the analysis of Wood and Kirkwood and division of energy into

different modes in the analysis of Heims are statistical concepts.

Thus in the present analysis, the following assumptions

will be made:-

I) The molecular transport effects leading to viscosity, heat conduction

and diffusion are neglected.

II) The system may be considered to consist of subsystems character-

ised by the translational,rotational and vibrational degrees of freedom.

III) Even though the total system is in nonequilibrium, there is equili-

brium within the subsystems. Specifically, the translational and rotational

degrees of freedom are in equilibrium within themselves and with each other

such that they may be specified by Boltzmann distributions in terms of a

single parameter, namely the translational temperature T t. The vibrational

subsystem is assumed to be also specified by a Boltzmann distribution in

terms of a parameter, namely vibrational temperature T v,

IV) The intensive properties such as density, enthalpy, etc. for the

mixture are the weighted sums of the corresponding properties for the

single system.

V) The Helmholtz free energy function may be written in terms of these

temperatures for the whole system from the statistical thermodynamics and

7



all the other thermodynamic functions like entropy, internal energy°

pressure, etc. can be obtained by the classical thermodynamic relation°

It was shown by Treanor (Ref. 28) that for simul!aneous

vibrational and dissociational nonequilibrium, the vibrational distribution

tends to deviate more and more from a Boltzmann distribution with increasing

translational temperature. However, for the range of temperatures of

interest here (around 5000°K), this deviation seems to be quite predominant

only at higher vibrational energy levels. Thus for simplicity, assumption

III, is made about vibrational temperature.

It was pointed out in Ref. 16 that the electronic partition

functions joel and _t_ for the oxygen atom and molecule respectively
may be taken as constant for the temperature range 1500°K to 80000K, and

that these constants are approximately equal to the degeneracy of the

ground state of atom or molecule, namely_ _01, and _O,- of Appendix A.
For this temperature range the use of values _el = 8.8 and _e_ = 3.3

gives /_, of Appendix A within 5 percent ahd O_e within 2. 5 percent.
See note_I) Appendix E.

The thermodynamic functions for the gas model considered are derived in
(A27), (A28),detail in Appendix A. They are Eqs. (AI8), (A22), (A23),

(A31),

Specific internal energy:

(30)

Specific enthalpy:

= -'<r,
Pressure:

Specific entropy:

¢ Tv -

Specific chemical potentials:

for atoms : -

8

(31)

(32)

(33)

(34)



for molecules:-

(35)

where constants KI, K 2 _ -_u are defined by Eqs. (A29), (A30), (AI7)
respectively, R is gas constant per unit mass of the diatomic gas, 6_"

atomic mass fraction, _v , _ are the characteristic temperatures for

vibration and dissociation, Tt, T_ are the translational and vibrational
temperatures and E v is the vibrational energy defined by Eq. (13) with

T=T v.

. RATE EQUATIONS

3.1 Chemical Reactions: -

In all the studies involving chemical reactions referred to in the introduction)

for a reaction equation of the type

i

where x i den_ote the chemical species and _[ , b i are the stoichiometric
coefficients 'of the reactants and products respectively, it is assumed that

the rate of reaction for species x i may be written as

ci{

where 17 denotes the product and kd, k r are considered to be dependent on

temperature alone and not on concentrations. But there appear to be circum-
stances when this is not true. A short discussion of chemical ideas concern-

ing these rates will clarify the point.

3. I.I. Chemical Model:-

In the study of chemistry, reactions are considered to occur through what

are called activated complexes. For simplicity consider at constant temp-

erature, the reaction

A + B _products D (38)

The process is then written as

Products D (39)A + B.___(A + B) +

where (A+B) + is an activated complex of A and B. There are two theories



describing the relation between CA+B)+ and the reactants and products, namely
I) Equilibrium theory and II) Steady state theory (Refs. 29, 30).

I) Equilibrium rates: -

In this analysis it is supposed that the reactants and the activated

complexes are in equilibrium with each other, and that the rates of the three

reactions indicated in Eq. (39) may be written as the product of concentra-

tions times a constant which is dependent on temperature alone. For exam#;Le,

(40)

for the first part of the reaction and

dt
(41)

for the second part of the reaction. From the assumption of equilibrium of

the first part of the reaction, equating Eq. (40) to zero and then solving for

(A+B) + and substituting in Eq. (41), one can write for the reaction of

Eq. (38),

(42)

giving

such that k d is a function of temperature alone since kl,

to be functions of temperature alone.

(43)

k__,i k2 are assumed

II) Stead 7 state rates:.-

In this analysis, no equilibrium is assumed between the activated

complexes and reactants. It is assumed that the activated complexes exist
for a short time interval after formationj and then either they become pro.-

ducts or return to the reactant state.

It is again assume_t that the rates of the elementary reactants can

be written as in"Eqs. (40), (41). For the steady state equation, one has .

(44)

I0



or

I
(45)

or

(46)

III) Dissociation of Diatomic molecule:-

(47)

For molecular dissociation, the reactionis known to proceed in

two steps

which replace

2r_ _" _ Producbe

(48)

(49)

(50)

In the Equilibrium assumption, one finds

_.,IA.I:- t__,I]s']{A7: o

with the steady state assumption

_,r.A]_- k,t_lrA] - f_L_= o
re,

(51)

$.

=- _, [aLl= - _" _a]"
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or _d --
+

This it would appear that rate coefficients k d are dependent on concentration
as well as on temperature. One important point to be noted is that the final

stage, that is Eq. (49) is supposedto occur without any further collisions,

but by only a reshuffling of the energy in the various internal modes to the

bond that is to be broken. Thus, in a complex molecule with several vibra-

tional modes, the energy acquired by collisions may be initially distributed

in such a way that it is not immediately transferred to the bond that breaks

ultimately and some time may elapse before, if ever, this event takes place.

Another interesting point to be noted is that the equilibrium assump-

tion for the rates of a diatomic molecule means that one may assign a vibra-

tional temperature T v to indicate the vibrational energy distribution in
various levels. This may be visualised by considering A and A ',_ as ground

and excited vibrational states. This temperature may or may not be in

equilibrium with the translational temperature T t. In the latter case, the

coefficients kl, k_ l, k 2 in Eqs. (51), (52) will have to be dependent on T t

as well as T v and consequently, so will k d.

The steady state assumption for diatomic molecules means that no

equilibrium within the vibrational degrees of freedom can be assumed that

is, there is a non-Boltzmann distribution in vibration. In the present report,

the rate coefficients will thus be equilibrium rates in the chemical language

because of the assumption of Boltzmann distribution in vibration. The disso-

ciation mechanism is discussed in more detail in Appendix E.

IV) Rate Coefficients :-

Thus for a dissociating diatomic gas following the reaction

/_,_ "t" X' '_ /_ ÷ /_ -f X (53)

where x may be either an atom or molecule, the net rate of reaction may be
written as

elf --
where k d and k r are called the rate constants and are temperature dependent

only. They are also called rate coefficients or specific rates. If Zd and
Zr are the number of dissociations and recombinations per cc per sec, then

-- Zd + Zr (55)

12



(56)

and

Za

(57)

(58)

or _
P

The ratio of these forward and backwards rate coefficients kd/kr is thus

dependent upon temperature only and this ratio is known as the equilibrium

constant K c since at chemical equilibrium Z d = Z r and this ratio is

_<_¢ Can be calculated from statistical mechanics (Refs. 29,

was the first to investigate the temperature dependence of

and proposed an exponential dependence on temperature.

assume:

_ = _ _,T)C-_/_r

- _CT_C-E_T

(60)

30). Arrhenius

experimentally
It is now usual to

(61)

where E* is the activation energy and is normally taken to be equal to the

dissociation energy D for diatomie molecules.

Finally one has,

 -O IT (62)

where a and n are empirical constants. This expression for k d can also be

derived using Thermodynamic considerations (Refs. 29, 30).

3. Io2o Collision Theory:-

Let n A and n B be the number densities of molecules of type A and type B.

Let z be the number of collisions per cc per sec. between these two types

of molecules. In the simplest model for reaction, it is assumed that the

reaction occurs whenever collision occurs with particles in an activated or

13



energised state, that is with an energy greater than or equal to the activation
energy. Then the number of reactions per cc per sec. may be written as

--/:::,_'r (63)

Za=ZC

__--5_[-[ is that fraction of all collisions for which thewhere the factor

kinetic energy of relative translational motion along the line of centres at

the moment of impact exceeds E*. The quantity E* is known as the activation

energy and is in general assumed to be the dissociation energy. In this

model only the translational energy of the molecules is taken into account.

As this prediction does not agree with observed reaction rates, a probability
factor P is added. In addition all the degrees of freedom of the colliding

partners, like vibrational and rotational, are also taken into account giving

finally, (Ref. 31)

where

P is the probability for the reaction to occur

Z is the number of collisions per cc per sec between

the nA, n B number of molecules of types A and B,
E* is the activation energy or the minimum total energy

necessary for reaction to occur, taken to be equal to

the dissociation energy D,

T is the temperature of the gas mixture,

s is the factor that takes into account the internal degrees

• of freedom of the particles entering in collision and is
shown to be I for diatomic molecule-atom collisions and

2 for diatomic molecule-molecule collisions.

In the derivation of Eq. (64) it is assumed that the vibration is in equilibrium

with rotational and translational degrees of freedom.

Equilibrium Rates :-

For reaction between molecules A and B, the equilibrium rates,

that is rates for the activated complexes being in equilibrium with unactivated

molecules, are written in terms of partition functions with the aid of statis-

tical mechanics as (Ref. 30)

C-
._m

where Q+ : partition function for activated complex (A + B) +

QA = partition function for molecule A

QB = partition function for molecule B

14



NA,

P = probability of reaction occurring

k, h = Bolizmann and Planck constants respectively

E* = activation energy

N B = number densities of molecule of type A and B respectively.

For diatomic molecule-molecule collisions,

Q÷ f
-.here 20'6¢ :Cr') leew.2 are the translational, rotational and vibrational

partition functions.

Steady State Rates:-

For steady state rates, Eq. (64) is obtained (see Ref. 30 for further

details).

3. I. 3 Experimental rates:-

In the determination of rate coefficients kd, kr at high temperatures, the rates

are assumed to be of the form given by Eq. (64) and the values of P and s

are determined by the study of density profiles behind normal shocks in shock

tubes (for example Refs. 32, 33, 34). It appears that in almost all these

studies, by the time dissociation begins vibration has already reached

equilibrium with rotation and translation (for example Ref. 32, 33 ) whereas

in some experiments of Wray (Ref. 34) for dissociation of oxygen in an

oxygen-argon mixture, there appears to be an overlap region where vibration

and dissociation are taking place simultaneously.

In a nozzle flow, there is simultaneous vibrational and dissociational non-

equilibrium. Thus the rate constants for dissociation as determined behind

shock fronts (which are essentially for vibrational equilibrium) are to be

modified for the vibrational nonequilibrium.

3.2 Vibrational relaxation :-

The vibrational relaxation equation can be derived by using rate equations

which are similar in form to those used for chemical reaction by considering

the molecules in different energy levels to be different species, namely,

where A m is a molecule in any vibrational level

=-
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3.2. I. No dissociation:-

When there is no dissociation, one has to consider only Eq. (66) which may be

written

d% --

The Landau-Teller equation for vibrational relaxation for a system of. har-

monic oscillators in terms of the vibrational energy

E,- hp .zjLR4:I
J

is obtained from Eq. (6"/). by multiplying by Ej = 4h 9
over the levels and applying the rules

4_4s=o -_or Id-sl _ /

(68)

and summing

(69)

f...h_
= Cj,,)k,oe_p__ )

•(70)

(71)

this gives
dt

wherein a vibrational temperature T v is defined such that

E, = )-,]giving

(72)

(73)

(74)

and E/v is defined as

,:, E, (75)

3.2.2 With dissociation:-

When dissociation and recombinafibn are occurring, one has to write two

16



more reactions,

(76)

which gives relaxation by exchange of partners, and

(77)

which takes into account change in Aj due to recombination and dissodiation

by collision with a partner X which may be an atom or a molecule. The

rate equations for reactions (76), (77) may bewritten as

dc&J _ [ao][a7
df _- _ (78)

(79)

Thus the net change in [/_] dueto all these reactions is obtained by adding

Eqs. (67), (78), (79)as

(80)

Eq. (80) gives all the information needed for calculating the vibrational and

dissociational nonequilibrium provided one knows various rate constants.

As these rate coefficients are not known in the present state of knowledge,

the only alternative is the simplification of this equation under suitable

assumptions about the rate coefficients.

3.2.3 Experimental vibrational relaxation times:-

The Vibrational relaxation times were found theoretically and experimentally

for a number of gases by experiments behind normal shocks (see Ref. 35 for

comparison between theory and experiment). It was found in general that

for diatomie gases the product _ _ where p is the pressure may be

written as a function of temperature (Ref. 36).

where a and b are constants and T t is temperature.

17



It appears that the vibrational rela.xation times calculated through .+,heuse of
Landau-Teller equation for exi0ansion of nitrogen in nozzles are much shorier
than those determined behind normal shocks (Ref. 23). Treanor (Ref. 28)
using the steady state assumption( that is relaxation from an initial non-
Boltzmann like distribution) tried to see if this phenomenon could be explained,
but not with great success. At present no further results are available on
this point.

Some theoretical calculations were made by Alterman and Wilson ._Ref. 37)

for vibrational energy transfer for &tom-diatomic molecule collisions. Their

calculations show that the vibrational relaxation times for molecules,having

a given vibrational energy initially are substantially shorter than for the case

when the molecul_s have no vibrational energy initially. Extending their

conclusions a littlefurther by assuming that a similar result may be expected

for molecule-molecule collisions and also for relaxation from lower to higher

or higher to lower vibrational energies (as in shocks and expansions respec-

tively), there seems to be some theoretical justification of shorter vibrational

relaxation times in expansions than behind shocks even if one does not assume:

relaxation from a steady state non--Boltzmann distribution of vibrational

energy. Unfortunately, the calculations of Refo 37 are for J_ e --- _r2

collisions and no relative values of the vibrational relaxation times for the

two cases are given. Also Wild (Ref. 38) has shown theoretically that the
relaxation time is also a function of the vibrationally excited state of the gas.

3.3 Model for the present calculations:-

For an exact calculation of the simultaneous vibrational and dissociational

relaxation, one has to use a system of equations of type Eq. (80) for the

several vibrational levels of the molecule. The problem is made more

difficult since none of the details of these rate coefficients are known. In

fact, in the literature, the reaction (76) of vibrational relaxation due t.o _atom• . _
exchange is not even discussed and there is no information on _',,_ _ _$ - .

As for the other rate coefficients, only the overall rates, namel_, ._v
the vibrational relaxation time where there is no dissociation, and kd, k r

the dissociational and recombinational rate coefficients with vibrational

equilibrium are known. An attempt is made to simplify the set of simultan-

eous equations (80) to two equations, one for the net rate of change of the

vibrational energy in a modified Landau-Teller form and the other for the net

rate of change of molecules or the dissociation rate equation in the form of

Eq. (54) where k d and k r are modified. For example by taking the sum of
Eq. (80) over all vibrational energy levels, one obtains the overall rate

equation for the net rate of change of molecules. Multiplying Eq. (80) with

the vibrational energy appropriate to level j and summing over all the
vibrational energy levels one obtains the overall rate equation for the net

rate of change of the total vibrational energy.

3.3. 1 Assumptions:-

The equation for the net rate of change of molecules in level j (Eq. (80)), may

be written in a slightly modified form as

18



where Zdj and Zrj are dissociation and recombination rates into level j.

(82)

i)

The assumptions made in simplifying this equation are:-

o I

ii) = f lo

iii)

iv)

, h2/

e

8

_ 70 (2 t" _'4 _ b_D-__.j) where Zo is the total number
v)

of collisions per cc per see per unit concentrations.

vii) ]9: _-- _ --(D-_ )/Zi_j where U is a parameter with
dimensionqs of temperature (see Appendix B for details).

Nj is the fractional number of molecules with vibrational energy Ej, which for

a Boltzmann vibrational energy distribution at temperature Tv is g£ven as

e-_J/_Tv and N = _- Nj. M(D-Ej) is the fractional number of colli-
• ,, ,-_-'--- _-----*: ....... ,_ 1_,._,_ +h_ 1_ _ _,,_t_.q =veater than or

sions -(D-
equal to D-Ej, thus M(D-Ej) = _ eS_/ilt . C is a constant such

that, for equal efficiency for dissociation from various vibrational levels, it

gives the experimental value of probability P in the overall rate constant ex-

pression Eq. (64). For unequal efficiencies, that is U :_ _O C is put equal

to one. K r is the overall recombination rate coefficient obtained from experi-

ments behind normal shocks.

viii) kda = _ kdm, that is the rate constant for atom molecule collisions

may be written as a factor times that for molecule-molecule collisions.

3.3. i. 1 Significance and Limitations of the assumptions:-

Assumptions i) to iv) have a bearing mainly on the vibrational relaxation since
these are concerned with the rate coefficients for transition from one vibra-
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brational level to another vibrational level, and this will not alter the total

number of molecules and thus will not explicitly affect the dissociation process.

However, it will have an implicit effect since the number of molecules in any

given level is affected which in turn affects the dissociation rates Zdj.

Vibrational relaxation:

Assumptions i) to iii)are made in deriving the Landau-Teller equa-

tion for vibrational relaxation of a h monte oscillator from an unexcited to

excited state with no dissociation, and they imply, respectively that

i) the rate for multi-quantum level transitions is zero,

it) the rate coefficient for transition from Ievel j to j-1 is j times the

rate coefficient for transition from ,the first excited level to ground level,

iii) the rate coefficient for transition from level j to j + 1 is (j +1)

times the rate coefficient for transition from ground level to the first excited

state which in turn is smaller than the rate coefficient for transition from first

excited state to ground level by the exponential factor of energy difference

between these two levels, namely h _J .

Under these assumptions, the vibrational relaxation time _ is

related to kl0 and k_}t, as (ref. 35);

"- t c )
these assump-As long as one uses experimentally determined

tions should not affect the results unless the form of the vibrational relaxation

equation itself is affected by modifications on these assumptions. However,

there is the possibility that the vibrational relaxation time obtained from

experiments behind normal shocks may not be the same for expansion flows

where the relaxation is from a higher to lower excited state as is already

discussed in Section 3.2.3. Expressions for kl0 taking into account anhar-

monicity and vibrational-vibrational energy transfer were given and discussed

by Treanor (Ref. 28). It was shown there that this increases the dissociation

rate for flow behind normal shocks compared to these obtained by fining the

Landau-Teller expression for kl0.

Thus, in the present work, _ was shortened from its normal

shock value to take this factor into account.

The significance of assumption iv) is that the vibrational relaxation

by atom exchange is not important. This assumption may be quite appro-

priate when the number densities of atoms is quite small and when the vibra-

tional excitation is not very high. This is so since this kind of atom exchange

is possible when an atom comes within the range of an excited molecule in its

outward vibration such that the nearer atoms may form a deexcited molecule.
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Thus for the flow behind a normal shock where the overlap region of vibra-
tional relaxation and dissociational reaction is small, this exchange reaction
may be considered insignificant. However, for expansion flows of a disso-
ciated gas, where there are sufficient number of atoms, this reaction can be
quite important in deexciting the gas. This could have been taken into account

by making use of the expression for kj+ 1 j postulated by Treanor (Ref. 28),
namely,

and
 OoTt

(/- C -  °'49

(83)

Where AI, A2 are constants, /CA is the reduced mass of the colliding mole-
cules, and Wj=Ej+I-Ej where Ej+I, Ej vibrational energies for levels j + I

and j.

Since the introduction of these rates would complicate the calcula-

tions, this was not done. The effect of this exchange reaction will be to

decrease the vibrational relaxation time. Thus shortening the vibrational

relaxation time _v from it s normal shock undissociated value would be
able to take into account this factor on an overall level.

II Dissociational reaction:

The effect of assumptions v) to viii) is on the dissociation reaction.

Assumption vii) gives higher probability or efficiency for dissocia-

tion to occur from higher vibrational energy levels whenever U is finite.

For U = _O , it gives equal probability for dissociation from all vibrational

levels. Though the equal probability assumption is not realistic, it will also

be used since it would remove one extra parameter from the problem, and in

those cases where the value of U is not important, putting U = CKD will

simplify the caicuiaiion._ co_isld_rably.

Assumption v) contains a factor M (D-Ej) which is the fractional

number of collisions with an energy greater than or equal to (D-Ej). In the

most realistic model, one has to take into account in writing this expression,

not only the kinetic energy or translational energy of the colliding molecule,

but also the vibrational and rotational energies. It was already pointed out

in section 3. i. 2 that taking these internal energies into Consideration will

multiply the exponential factor by (D-Ej/kTt) _/5./ where __ is 0 for atom-

molecule and j for molecule-molecule collisions for vibrational and trans-

lational equilibrium° Thus

MCD-ej)
for vibrational and translational equilibrium and taking account of all energies.
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With this expression for M (D-Ej), the coupling factor will be modified as
shown in Appendix B and will complicate the calculations. Thus for simpli-
city the contributions of internal energies are neglected, giving

M (D- Ej) = "

Assumption vi) means that the recombination rate coefficient is not

affected by the vibrational nonequilibrium. This is reasonable since recom-
bination is achieved as a result of collision between two atoms and a third

body and, in the model where only the translational anergies are taken into

account, it does not matter whether the third body, if it is a molecule, is in

vibrational equilibrium or not. However, if one takes into account the vibra-

tional and rotational energies also, then the krj for a molecule as a third

body should be modified, while for an atom as a third body no changes are

required.

Assumption viii) means that the dissociation rates with molecules

or atoms as second bodies are different. This seems to have been borne out

from the experimental results of Byron (Ref. 33). The value of _ is

as derived in Appendix B from Byron's experiments. wm

3. 3.2 Dissociational rate equation:-

Under the above assumptions the rate equation for dissociation may be written

as (See Appendix B for details)

z>t -- ,, ZF"

where

kr

t
m a

Kc= _e_/k r

v = gl _v.)QL-o)

is atomic mass fraction,

is the recombination rate constant obtained from normal

shock experiments,

is the density,

is the mass of atoms per unit mole

is the equilibrium constant given by Eq. (B85)

is the coupling factor due to vibrational nonequilibrium such

that k d = V k d eq.

Q's are vibrational partition functions with appropriate T,

I _ l r L_

7,, T. U
(85)

(86)

(87)
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3. 3. S Vibrational relaxation equation:-

The rate equation for the net rate of change of the vibrational energy per unit

mass _v may be written as (see Appendix B for details)

_z %-, (,-_<) (,-<)

where

E

6's

is the actual vibrational energy per unit mass

is the vibrational energy per unit mass calculated at

translational temperature T t

is the average energy lost per dissociation = 6CTf)
is the average energy gained per reco_nbination = 6.(-U)

may be written as = x E.;expc_./_r)//QlT) with the

appropriate temperature T.
vibrational relaxation time

, BASIC EQUATIONS OF MOTION

The basic equations of motion are:

_f /=d,'v "
Mass: _-_ W" _ =0

Momentum:

Energy: D_ _ _ _DP -- 0

State:

Enthalpy:

(88)

(89)

(90)

(91)

h = _-K4

Rate: ............. E_ -- _,.r,., _. I (93)
ui_OUla_luLial Df _" [ M i.- I

vibrationalD_____= __9_q___YL{E-_v)_b

Wherep, _+ , 7, o_ , T t, 6v,, h are pressure, density,
velocity, atomic mass _ion, translational temperature, specific vibra-

tional energy and specific enthalpy respectively. The equation for specific

entropy variation and the expression for specific entropy are given in Eqs.

(A36), (A18). IV , V, L, E, G, _ are defined in Section 3.3. The

differential bperator is _ = _-- + _,, grad. For steady, one-dimen-

sional flows _24r= _-_-_ _ where _- is the speed and x is the coordinate
in the flow direction. For steady, adiabatic flows, the energy and momentum

equations give along a streamline,

h + _ = bo =constant (95)
Z
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For flow from a reservoir, ho is the same on all streamlines.

4. 1 Dissociational models :-

Eqs. (88) to (94) are the equations to be solved for the problem of simultan-

eous vibrational and dissociational nonequilibrium of a pure dissociated

diatomic gas. It would be of interest to compare the form of these equations
with those for the various dissociation models referred to in the introduction.

Namely:

i)
ii)

iii)

iv)

Ideal or Lighthill dissociating gas model.

Vibrational equilibrium - dissociational nonequilibrium model.

Uncoupled but simultaneous vibrational and dissociational

nonequilibrium model.

Coupled vibrational and dissociational nonequilibrium model

with (a) equal efficiency of dissociation from all vibrational

energy levels; called the non-preferential model, (b) higher

efficiency or preference from higher vibrational energy

'levels, called the preferential model.

Now these various dissociation models will affect the form of the rate equa-

tions (93) and (94) for vibration and dissociation and the enthalpy expression

h in Eq. (92) but will not affect the form of the equations of mass, momentum

and energy, that is Eqs. (88) - (90), and the state equation (91). The dissocia-

tional models fall into two distinct types, namely those which assume vibra-

tional equilibrium, that is cases (i) and (it); and those which assume vibra-

tional nonequilibrium i.e. cases (iii) and (iv).

4. I. 1 Vibrational nonequilibrium models:-

4. I. I. 1 Coupled Preferential dissociation model:-

For simultaneous nonequilibrium in vibration and dissociation, the coupled

preferential model is the most realistic postulated here provided one can

prescribe the correct value of the parameter U.

It should be recalled however that it has been assumed that the vibrational

nonequilibrium process csa be characterized by a vibrational temperature T v -

which differs from the translational temperature T t, and that this assumption

implies a Boltzmann distribution of vibrational energy. For the flow region

behind a normal shock advancing into an undissociated gas Treanor (Ref. 28)

has shown that a more appropriate model would be that of vibrational relaxa-

tion from a steady-state distribution which is non-Boltzmann. This is so since

initially only dissociation occurs since there are no atoms to recombine, thus

depleting the upper vibrational energy levels and thus producing a non-Boltz-

mann distribution. However, Treanor points out that as soon as the recom-

bination gains importance this unbalance is removed and a Boltzmann distri-

bution in vibration is restored. Thus for the expansion flow of a dissociated
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gas which is initially in thermal and chemical equilibrium, the recombination

process is as important as dissociation and thus the model of vibrational

relaxation from a Boltzmann distribution in vibration appears to be quite

good. For this same reason, prescription of U as a solution of Eq. (B65),

namely

e tl'/u X,, (B65)

Q :zT" Q ( Yt;

for expansion flows is quite realistic. This relation is obtained by equating

k d from the present model for T t = T v with the experimental k d measured

under vibrational equilibrium conditions.

However, as the solution of this equation for U is involved, a value of U = -g-

was used following the suggestion of Treanor and Marrone (Ref. 21). This

value of U gives higher efficiency or preference for dissociation from higher

vibrational energy levels as

which is plotted in Fig. I.

J
"C

This model is called coupled since the effect of vibrational nonequilibrium is

taken into account in the dissociational rate equation (93) through the coupling
factor V

Q (Tt) Q (Tf)V-
Q (Tv) Q (-U)

where the dependence on T v and U is clearly seen. It can be shown that

V >i. 1 in the expansion flow since T v _ T t. The implicationv., of this may
be better appreciated by recalling that by definition, V = _e_, so that V_ 1
implies that the nonequilibrium dissociation rate is greater than or equal to

that for vibrational equilibrium. Physically the observation T v _ T t means

that there is more energy in vibration than when T v = T t so that the mo]ecu]es

are more easily dissociated. Hence k d _ kde% Also by substituting for

o_n_a_ e_ from Eq. (B63) and for V, one obtains for the dissociation rate
c under vibrational nonequilibrium

kd = V" _dv_'_,

CT J Q C-U)
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= kd U)

thus showing that kd is not Only a function of T t and U as in vibrational

equilibrium, but also a function of T v

The effect of dissociational nonequilibrium on vibrational nonequilibrium is

taken into account by the last two terms of Eq° (94) which are the vibrational

energies lost due to dissociation and gained due to recombination respectively°

4. 1. 1.2 Coupled nonpreferential model:-

In this model it is assumed that dissociation occurs with equal efficiency or

with no preference from the various vibrational levels. From the form of

the efficiency factor
-_cD-mj)/kU

P.=(_
q

it will be seen that putting U = o_ makes Pj=I for all j. Thus the model

with U= _ is called the non-preferential coupled dissocia.t_on model.

The coupling factor V simplifies in this case to

aCr )
V :- _t

Q [_) I,,I

where Tv T_
levels. This is so since

and N is the total number of vibrational

and Q(-U) =
=/-4

The average energies lost in dissociation and recombination _] and G,

Z f _

: Z. e-_/kr_ - _ e- " ,_

s imp ] i fy

:L, e zsj
f _ @/_u

In this case also V _ 1 since T K _ T t. But it is difficult to say if V in the

nonpreferential case will begreater or-less than V in the preferential case.

However, one can say that E and G, for the nonpreferential model will be

less than those for the preferential model.
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4. 1. 1. 3 Uncoupled Model:-

In the uncoupled model, it is assumed that vibrational nonequilibrium has no

effect on dissociation and vice versa. In other words V is taken equal to

unity and the net effect of the last two terms in the vibrational rate equation

(94) is considered to be negligible. This will be reasonably true only for

vibration and dissociation very near equilibrium. Then the number of disso-

ciations is roughly equal to the number of recombinations and so is the average

energies lost or gained. However, where vibration and dissociation are suffi-

ciently out of equilibrium such that one of them predominates this will be a

very poor approximation.

The rate equation for the uncoupled model will thus be

De

D_¢_ _- _v

Dr
/I

4. i. i. 4 Limits on the coupling factor V:-

In the normal shock case where T v
between 0 and i.

is always less than Tt, V always lies

V

_
 rv) Q E-u) - _ t

However for the expansion case T v is greater than T t and may in course of

time freeze thus increasing the difference between them. Thus to start with

V _ 1 since T t _'_ T V If the proper relation between T t and U given by
Eq. (B65) is used, then

,_ . /T_ %

where n is positive. As T t goes on decreasing and T v remains constant, it

would appear that V should ultimately tend to zero after reaching a maximum °

This is necessary to be consistent to be with the concept of freezing. This

situation should be the same for preferential or non-preferential models.

4. I.2 Vibrational equilibrium models:-

For vibrational equilibrium

T t = T V and _ = Ev

_v drops out as an independent variable since
and thus, the vibrational rate equation
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would simply be a function of Tt. This situation occurs in the limit L--_-d_

The ideal dissociating gas case is a further simplification of this model and

is discussed in great detail in Ref. 5.

4.2 One dimensional Flow:-

For orm dimensional, steady flow through a nozzle, the continuity equation is

replaced by

?_ = constant = _e (96)

where A is the area of the nozzle at a given section x. The determination of

thi_ constant _teis discussed below in Section 4.2.3. The solution of this
flow problem may be conveniently carried out by a system of three algebraic

equations, (Eqs. (96), (95), (91), for mass, enthalpy and state), and three

coupled ordinary differential equations for T t, Ev _ O¢ . The equations

for _¢ and _ are immediately obtained by replacing the operator,

bj _-R -h, obC_nDt

The derivation of the equation for T t is straightforward. The mass,

energy equations are

i.df / d_ , dA
-_ +-7[ d.,_

( 98'1

momentum,

dh _ !

"-- 0 (99)

(100)

-- + 4, d_, / dp
-_-2r F -_r_ --- 0 (101)

From state equation

i dp__._j_d£ -I- / £9_r+/ do< (_o2)
r

Fromthese four equations 2_, _-X, _, canbe eliminatedleading

to the equation for _ as.
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where M_ is the frozen Mach number given by

and a; is the rozen speed of sound given by (see Ref. 5)

(104)

The solution of the flow problem is completely given by solving Eqs° (9 I),

(95), (96), (971, (98), (103).

4.2. 1 Effect of the various dissociation models on quasi-one dimensional

Flow equations :-

It is already shown in Section 4. i how the various dissociation models modi-

fy the rate equations for vibration a_d dissociation. For one dimensional

flow, the right hand side of Eqs. (97), (98) will be simplified in the same

way. In addition, for the vibrational equilibrium model, in the expression

for the enthalpy given by Eq. (92), the vibrational contribution _v will ne
d Ev

longer be an independent variable and thus in Eq. (101), the term
may be written as dg, . _Tt which simplifies Eq. (103) to

-

where _; _ is the partially frozen Mach number referred to the partially

frozen souna speed _ , i.e. 1_; =

+- (

For vibrational nonequilibrium model, Eq. (103) is not changed in any way.

i.e. it is only the frozen Mach number M_c that enters in Eq. (103) and
the d_v term remains inside the bracket on RHS of Eq. (103)o

4.2.2 Isentropic limiting flows:-

One can further consider some limiting flows which are isentropic and

which can be calculated as the solution of a system of algebraic equations°
These are:

29



i) Vibration and dissociation frozen, or fully frozen case,

it) Vibration in equilibrium with translation while disso-
ciation is frozen, or partially frozen case,

iii) Vibration and dissociation in equilibrium or full
equilibrium case,

iv) Vibration frozen while dissociation is in equilibrium,

or partially frozen case.

In all these cases it can be shown that the flow is isentropic. It is doubtful

if case (iv) is ever realized for real flows. Thus only cases (i) to (iii) will

be considered. In all these cases, whether vibration is frozen or in equili-

brium it drops out as an additional variable since for frozen vibration T¢

is constant while for vibrational equilibrium T t = T v When dissociation

is also frozen 0_" also drops out as a variable since it is constant while

for dissociational equilibrium, one has the additional relation between _ ,

, T t given by (A34) in Appendix A. Also since the flow is isentropicon can use the entropy equation given by (AI8) in Appendix A as a further

relation between c_' , T t and T V This entropy equation is rederived
as an integral of the differential flow relations for cases (it) and (iii) in

Appendix C. Thus these limiting cases can be calculated as a solution of the

following set of algebraic equations:-

Mass

energy

state

J__/q = constant = _7_0

_'t._ho : constant

enthalpy h= 7"_ _ -¢.(1"-_)_c¢v ' q R_

dissociation _¢ __ Z______D0/ ) _ [/__:_ e-*_e

equilibrium 1 -4e -- p

entr°py -_ -_ -- _--- -K 7- v -¢Jr_ _-¢-_.)

For dissociational equilibrium, the last term in the entropy equation is zero

since the expression logarithmic term becomes zero.T_is may be seen from

the equilibrium relation for _ .
......................................................................

It may be noted that this relation derived in Ref. 8 is in error due to the

omission of the (I- _) i=v /T t for vibrational and dissociational equilibrium.
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Thus for dissociational equilibrium,

+ %
..%

For frozen dissociation, all terms containing _ only and constants like

_ , _ , etc. can be incorporated into ,Sp. , thus giving the relation

between p and Tt as

The constants -_- can be evaluated for the reservoir conditions. These

entropy equations are the same as those derived Ln Appendix C starting from

differential flow relations.

In order to complete these equations one has to determine the critical mass

flow _e. For these limitingd_ows another algebraic equation can be ob-
tained by requiring that at _ = 0, the Mach number (referred to frozen,

partially frozen or equilibrium sound speeds discussed in Ref. 5 in the

respective cases) be unity. This is so since in all these cases Eq. (103) can

be shown to simplify to

d _ --0-,4) hr. ,_
d W

Where M is the appropriate Mach number. The , _- terms

in Eq. (103) either drop out (for the frozen cases) or are incorporated in

d_/_, term (for equilibriumT _ _ ' _v are functions of Tt). Thus for
M: I, if the derivative d,_/_ is to be finite, d_/_x should be zero,

that is when dA = 0 (at the throat) the Mach number is unity.
(ix

This algebraic equation is derived in Appendix C for partially frozen and

equilibrium flows. This equation along with all the other equations except

the mass continuity equation determines the critical conditions from which

the critical mass flow is obtained.

4.2. 3 Determination of mass flow under nonequilibrium conditions:-

The determination of the critical mass flow is not as straightforward as in

the limiting flows. The location of the point where the iV[ach number becomes

unity cannot be a priori determined as in the iimitir_g flows. For, from

Eq. (103),

dZ _ _2 / i dl1 i dd p_ f /_;)k_ d_ dE;, q
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one can only say that when Mf = i, the expression within brackets should

be zero if dI_/_xis to remain finite. Since this expression contains d_ d_"

which themselves depend on the past history of the flow in the subsonic

portion of the nozzle, the point where Mf = 1 occurs can only be determined

by obtaining a complete solution to the problem. However, it can be shown

by a simple argument that the point for which Mf = 1 occurs downstream of

the throat. We can define a local equilibrium Mach number by using the

equilibrium sound speed calculated using local values of _ and T determined

for the nonequilibrium flow. This local equilibrium Mach number is unity

at the geometrical throat. (Ref. 41).

Since the frozen Maeh number is less than the equilibrium Mach number,

the point for which Mf = 1 must be downstream of the throat°

Thus the nonequilibrium critical mass flow 07]_ has to be determined by
an interation scheme which uBes the mass flows for fully frozen and equili-

brium cases as limits. This iteration is done by first choosing for O9")xe

a value between mf (frozen)and m e (equilibrium) and then calculating

the nonequilibrium flow up to some point downstream of the geometric

throat. If the initial value chosen is less than the critical value, then Mf

reaches a maximum value which is less than unity and then begins to

decrease; if this initial value is greater than the critical value, then Mf

reaches a valu@ greater than or near unity and integration no longer can

proceed forward. In the former case, a new larger value for Ol]xe is
chosen and in the latter case, a new smaller valu_ - is chosen; and the cal-

culations continued until these two limits coincide. This procedure gives

_he nonequilibrium critical mass flow and the point where Mf = i.

Now it is not possible to carry a numerical computation through the frozen

sonic point in any nozzle flow calculation. This applies to perfect gas flows,

as well as nonequilibriurn flows. The reason is that at the critical point

quantities like d7-_/_2" approach the form o / o. One simple way of

surmounting this problem, and it is the one that is used here, is to apply

small discontinuous jumps to all variables to carry them through this point.

This is further discussed in Section 5 and Appendix D.

4.2.4 Initial conditions for starting nonequilibrium flow calculations:-

and

The implication of the limiting flows on the rate equations is as follows:

For instantaneous equilibrium of vibration and dissociation with local

conditions, the Eqs. (97) and (98) simplify to

= z -j= -i- o

32



but _ and _ are not zero in equilibrium flows. Thus for _ and
_V to remain finite, _/_ and _ should tend to zero. However,

_SP_and _',,are always finite since they involve only the rateaof reaction
and of relaxation.

Thus W = o a, a' f .--o

can happen only for q---.-O. However, for any q different from zero, these

conditions are realized only by making _'---,-=_ and _ ----_o. Thus the

instantaneous equilibrium assumption for a flowing gas implies infinite

rates such that "_ ---,- _ and _ _ 0

Similarly for the frozen limit,

o

---_- 0 w

The quantities VL-1, _-Ev )
zero.

Thus _ d _v-- d_" ----0

+

VL- (_ - _;¢/ --- _=¢ all differ from

can be realized only by making

*--o c nd / "- 0

Again and L_- being finite in reality, this limit is possible only for

q _ that is for infinitely accelerating flow. However for any finite

q, one may interpret these conditions to mean q_., _ _ O, in other
words zero reaction and relaxation rates.

From this one may conclude that starting from the reservoir, the flow will
I • ,- _-11 ----,-. _-" .... 41"%.. : _'I_.."I_. _ .-,, J.._ .m,'_¢",l _

O_ ill LU I_-i UUt UI _lu_±,u. _u±xx _±vw_j ¢_ _I

ciable (as q increases slowly from zero in the reservoir/ and will begin to

freeze as soon as q becomes large enough for _//_r and _ to be very
near zero.

Thus the transition from equilibrium to nonequilibrium and nonequilibrium

to frozen is nonuniform since in the first case 3_" and -_ change from

infinite values to finite values, while in the second case, they change from

finite values to zero. This transition from equilibrium to nonequilibrium

is a problem which one encounters in the calculation of nonequilibrium flows.

For finite rates, starting nonequilibrium calculations from equilibrium

initial values of oz , Tv,, 7_ yield
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thus giving a discontinuity in the derivatives while the variables themselves

are continuous. When the flow is very near equilibrium, the derivatives

rapidly reach their true values as is seen in Figs. 4c, 4do This procedure

was suggested in reference 14 and is adopted in the present work.

o SPECIFIC CALCULATIONS

With the thermodynamic and coliisional models discussed in

the earlier sections, two sets of calculations were made for the flow of

pure dissociated oxygen through nozzles,

5. I Aims of the Calculations:- z :.

I. The first set of calculations were made with the following aims:

i) To find out how much nonequilibrium calculations started

at a point downstream of the geometric throat, where the frozen Mach

number Mf is slightly greater than one, differ from nonequilibrium calcu-.

lations started from a point well upstream of the geometric throat.

it) To find out if, when the gas is highly dissociated (for exampl.e_

atomic mass fraction _ = 0o 95) so that the vibrational energy is very small

when compared with the energy in dissociation, calculations made under the

assumption of vibrational equilibrium will in any way (_ffect the atomic

mass fraction.

iii) To study the effect of the parameter U, that is the efficiency

factor for dissociation from various vibrational energy levels°

For these calculations, with To= 5900OK, two values of Po, 89. atm and

9.4 arm were chosen° For the purposes of this study, an axisymmetric.

hyperbolic nozzle with the area ratio variation given by

was chosen, since calculations with vibrational equilibrium are available°

Two values of U were chosen_ namely U = _ and U =. _/6 o The value

U = _) corresponds to equal efficiency of dissiciation from all the vibra.-.

tional levels, while U = 8,,/_ gives the efficiency variation from level to
level as

= e = e
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The calculations for U = _ and U = _Z_ correspond to the coupled

nonpreferential and preferential dissociation models respectively, where

II. The second set of calculations were carried out for experimental condi-

tions obtained in the UTIAS II" x 15" Hypersonic shock tunnel for pure

dissociated oxygen flow given in Table I. A sketch of the tunnel is given

in Fig. 2 and the area ratio variation of the primary nozzle is given in

Fig. 3. The nozzle geometry was divided into five sections and a fifth

order polynomial fit made for each section. The coefficients are given in
Table II. They were chosen so that the gradient d_/d_" as well as

A was continuous at the junction points.

The flow through the corner expansion fan of the deflection plate and the

terminal wedge nozzle were found to be frozen, thus allowing the use of

simple isentropie relations based on the frozer, values of T v and

at the end of the primary nozzle. Boundary layer corrections were applied

in the primary nozzle under the frozen boundary layer approximation using

the formula for boundary layer dislSlacement thickness given by Burke and

Bird (Ref. 39) for turbulent flows, namely

where /gp and/_4 r are evaluated at a reference enthalpy

(108)

hr given by

/'7,-= o,2z (ho-h ) he) (109)

where subscripts r, o, e, w refer to reference, stagnation, edge of
boundary layer and nozzle wall values. The nozzle wall was taken to be

at room temperature. The viscosity of pure dissociated oxygen is caleu-
1-J-_J D ..... J-l^_ O..-l-k^_l_A _A,_I ,_ ,_4,T_ 4_ ]I_P_T _ Zi/_ ,'_'Y_Ixr

(110)

The aim of these calculations was:

i) to find out the effect of variation in the vibrational relaxation

times on the flow properties;

it) to consider the effects of slight variation in Po, To values,

keeping one of them approximately constant. This was necessary because

the stagnation pressure behind the reflected shock in the reservoir upstream

of the primary nozzle showed variations during the test period due to over-

tailoring, making it difficult to give a proper T o from the measured Po and

incident shock Mach number. This Po was always less than that predicted
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TABLEI

Experimental conditions for the pure dissociated oxygen flow in the ll" x ]5"

UTIAS HypersorAc Shock Tunnel.

Terminal nozzle entrance ]3" x 0.4"

Ca+n ) COK) ca+m) da+rn ) CoK )

25

25

10

10

8.03

9.62

9.63

11.00

23° 13

40.82

16, 67

24, 49

4040

4630

4350

4800

19.05

34. O1

12.93

19.73

20.82

39.46

14° 18

22, 10

3960

4600

4210

4750

22.45 4600

Pl = initial pressure in the channel

M s = shock Mach number

PoTheo, Totheo = calculated by equilibrium theory from Pl and M s

Polexptl, Po2expti =: two plateau values experimentally observed
due to overtailoring

To2 = calculated for Po2 expt], from Totheoo and Potheoo -under
the assu.ml_,tion of isentropic compression..

See Footnote

Footnote:

Due to reflected shock boundary layer interaction, the conditions immediately

behind the shock are different from those given by theory for given Pl and

Ms. Also_ whenever there is perfect tailoring the pressure trace for the

pressure .behind the reflected shock should remain constant until the reflecled

head or tail of the expansion wave arrives at the nozzle end of the shock

tube. For combustion ru.ns, the range of tailored shock Mach numbers is

limited for given driver and driven gas combinations forcing one to use

over-tailored conditions to obtain higher shock Mach numbers. Under such

condii:ions_ one observes a pressure rise due to the compression waves

produced by the reflected shock-.contact surface interaction° Under the

assumption that behind the reflected shock all processes are isentropic_

one can calculate Tol, To2 from _ Otheo and experimental "_oi and _O 02°
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TABLE II

Coefficients in the polynomial fits for the area ratio variation,,of the UTIAS

HST primary nozzle:

range of a o a 1 a 2 a 3 a 4 a 5
(inches)

-1.2 <_ 76.<-0.8

-0.8 <-"__-0.4

-0.4 ,<96_-0. II

-0. II<__6_i. 2

1.2 _-._3.0

3.0 <x_¢_5.4

5.4 _.<31. 5

-49. 84334

-5. 399903

1.0

1.0

0. 70009936

-6. 1320435

-14. 637513

-158. 4928

-36. 54116

0. 4166667

0. 4166667

0. 55533466

0. 5971668

6. 4113094

- 156. 5498

-59. 99915

-21. 61491

0

0. 11590198

-0. 9679386

-0. 4268819

-55. 48355

-38. 54122

-14. 32370

0

0. 03854181

0. 09266074

0. 02090338

- 0. 0005340

0 0

0 0

0 0

0 0

0 0

0 0

0. 00000515

A _ao+ al_+ a2 9_2+ a3:z3 + a4%4 + a57¢5
A*

A* = 0. 36"
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on the basis of initial channel pressure and shock Mach number.

iii) finally, to give the flow parameters in the test section, in

particular the atomic mass fraction so that comparisons can be made with

some experimental measurements of atom concentration currently being

made in the UTIAS hypersonic shock tunnel (Ref. 45).

The results of these calculations are plotted in Figs. 4 to i0. Fig. ii gives

a comparison between theory and experiment of test section static pressure°

Table IV gives the comparative values of Tt , T v , _4 ,/O

and p at the end of the primary nozzle, after the deflection plate and

in the test section. The effects of variation of the vibrational relaxation

times are given and also that of the boundary layer corrections.

5.2 Expressions for rate constants:-

In all these calculations, the expressions used

for recombinational rate constant k r and the vibrational relaxation time

_¢ are those given in Ref. 13:

T= • 6m&/_ol_ _ s_o. (iii)

Glass and Takano (Ref. 5) in their calculations of nonequilibrium flow of

pure dissociated oxygen around a corner with a vibrational equilibrium
model have used a constant value of k r = 0.67 x 1015 cm6/ mole 2 see in

the temperature of range of 2500°K to 4000OK. Since in the present calcu-

lations, the temperature range was much larger, say, starting with about
5000°K in the reservoir to about 700°K at the end of the primary nozzle,

it was considered necessary to use a more realistic temperature dependence

of k r so that the above expression fs used. To take into account the unharmon-

icity for oxygen vibration, the partition function and the vibrational energy

are written as sums and the vibrational energy for level j is taken to be

given by

0 (i "'- . (113)
_j. : IS¢'o._1. I

from Ref. 22.

is given by (See Appendix B, Eq. (B85))

The equilibrium constant K c used in the rate equation (84)

- _)b/T (114)

which can be derived from Eq_. (60), (A34), (A31), and (A14). From the

oxygen dissociation experiments of Byron (Ref. 33) , the relative efficiency
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of oxygen atoms and molecules is found to be

and this value is used in all the calculations (See also Appendix B).

(115)

5.3 Procedure for numeridal ::calculations :-

It was already pointed out in Section 4. 2.3 and

4.2.4 that the integration of the nonequilibrium equations poses three pro-

blems: (i) starting conditions, (ii) determination of nonequilibrium mass

flow, and (iii) passing through the critical point Mf = 1 and these were
considered in a general way. The specific procedure used is outlined below.

As was discussed in section 4.2.4, the starting conditions were taken to be

equilibrium conditions with discontinuities in derivatives.

5.3. 1 Nonequilibrium mass flow

The critical mass flow _f for fully frozen flow is greater than
_i_ for equilibrium flow. The evaluation of the nonequilibrium critical mass

flow must be done only for nonequilibrium calculations starting upstream of

the geometrical throat. For nonequilibrium calculations starting downstream

of the geometrical throat, the mass flow is that of equilibrium flow since up

to the starting point, the flow is considered to be in equilibrium. Thus for cal-

culations starting upstream of the geometrical throat, initially a mass flow

somewhere in between i'd e and m_f is chosen and is written as

I -- nqe
which defines facmne 1 from:the chosen t_lq_eland known m e , and mf are given

as lower and upper limits for _qhe - With this _X_I ' the starting or initial
conditions are calculated as a solution of the algebraic equations for equilibrium

flow. With these initial conditions and the mass flow _3yel , the equations

were integrated until either Mia-1 or Mf = Mf max < 1 is obtained. In the
former case facmne is increased such that

(facmne) 2 : 1/2 ((facmne) 1 + _n_

V_nel

while in the latter case, it is reduced such that

(facmne)gd= 1/2 ((facmne) 1 +mf/haxe 1 ) where facmne2, facmne 2_

are the new values of facmne.

and new upper and lower Limits on _Xxe 1 are given as

when ]b_l_. max <

( 7r? e -5 7r?f
1 and
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W_en Mf _ 1. In the next step similarly a new facmne is calculated. For

example, if the first two iterations give a (facmne)! for which Mf_l and

a facmne 2 for which Mf max < 1, the new (facmne) is taken as



facmne = 1/2 (facmne 1 + facmne 2)

with the limits on facmne as

facmne 1 < facmne _ facmne 2

which mean that

facmne 1. Me < mxe < facmne 2 me

This iteration process was continued until facmne 1 and facmne 2 differed
in their last significant figure used in the computations (in the present work
it was the eighth figure). In other words, in the final case

facmne 1 - facmne 2 = 1 x 10 -7

This determines mxe and the critical point.

5. 3.2 Passing through the critical point Mf = 1

In the perfect gas case, the only equation to be integrated is

Ex --
Since for expansion in the downstream part of the nozzle M > 1 and
dA < 0, one can pass through the critical point by taking x > o and a T t

< Tt* where Tt* is the throat value which could be determined a priori.
The same can be done for the equilibrium or frozen gas flows since M= 1

is again obtained at x = o and Tt*, O_ * are known a priori. However, in

the nonequilibrium case, the point where Mf = 1 is approached only as a

:: _4 * are unknown. Thus one has to give a setlimit, and also Tt*, T v ,

of values _)f, "*Tt , "Tv ' z_ _ and do the calculations for

! T*'*

where _¢/ , _"/ , T¢: , T_" are the limiting values obtained for

the lower limit on /_77xe . This has to be repeated until the calculations
proceed forward giving supersonic flow.

Another interesting situation was found with regard to the behaviour of the
numerator and denominator in dTt_ .

Let SUM and DIFF denote

SUM =_L/__
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2

DIFF = I-- [V]la

For all _e such that M_< I , SUM changes from negative to positive

values smoothly as one passes through the point where M;_is obtained.

But for all (_,e such that Mf _I, SUM reached a minimum well before

the point Mf = I, while being negative all the while and began decreasing

very rapidly as Mf _ 1 is approached because of the singularity at
Mf = I. Thus one has to also choose the point where this jump in the varia-

bles is to be achieved. In some earlier calculations, this was prescribed

at the point where Mf began oscillating around Mf = 1 while ignoring the fact

that SUM has already passed its minimum value and thus large jumps in

, ]'e , ]- , (% were required. The choice of these jumps
• V

is not stralghtforward as they are interdependent.

A computer programme in Fortran Ii language was written to integrate the

differential equations using a fourth order Runge-Kutta method. Following

the suggestion of Ref. 14, the programme contained a mechanism by which

the integration step size was increased as the calculations proceeded down-

stream in the nozzle. The integration step size at the start was varied

from 10-5 to 10-8 and a value of 10 -6 was found to be quite good. The pro-

cedure for varying the nonequilibrium mass flow and the jump conditions

were also incorporated in the programme through a subroutine.

The programme was run on an IBM 7090 computer at the Institute of Compu-

ter Science of the University of Toronto. Even though each iteration for

nonequilibrium mass flow determination took a small time, about 5 minutes,

several iterations up to 20, were required to obtain the limits such that

facmne defined in Section 5.3.1 was found to sufficient accuracy. Thus only

the earlier calculations for the axisymmetric hyperbolic nozzle were done

starting upstream and downstream while all the later calculations were

always started downstream of the nozzle throat, at _ = + 0.25".

. DISCUSSION OF RESULTS

6. 1 Axisymmetric Hyperbolic nozzle

As explained in Section 5. I. I, the aim of these

calculations is: i) to study the effect of starting point for nonequilibrium

flow calculations, it) to consider the effect of the amount of energy initially

in vibration, iii) to examine the importance of the parameter U. For these

purposes it was enough to make the calculations for a short distance, that

is 3.0cm downstream of the geometrical throat.

6. I.I. Effect of starting point for nonequilibrium calculations

To study this effect, the calculations were done only for the most

complicated case, that is the coupled non-preferential dissociation model

and for the reservoir conditions T o = 5900OK and _. = 82 atm. The non-
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equilibrium calculations were started at

_=-o,5C, r73., "_ = - o, I d,n,_ . "_ = -/-,2

where _g = 0 is the geometrical throat.

For _T =-0.5 cm, the flow is very near equilibrium and in 6 minutes of

IBM 7090 time, the calculation could proceed only up to x = -0. 35 cm.

Thus the calculation was shifted to _ =-0. 1 cm which, when once it passed

the critical point of Mf =1, took about 5minutes of computer time to do

the calculations up to x = +3.0 cm. More details about the iterative proce-

dure used to find the nonequilibrium mass flow and passing through the

critical point are given in Appendix D. For calculations starting at x =

+. 2 or . 3 cm, there are no problems since the mass flow in this case is

simply the equilibrium mass flow.

Figs. 4a, b, c, d show the results of these calculations. The quantities

(Figs. 4c, 4d) are plotted for upstream and downstream starting points.

It will be seen from Figs. 4a, 4b which give results for starting at x =

-43.1 and + 0.3 cm that the variables merge into each other around x = 1.0

cm, especially for T t and T v while the effect on p cannot be seen even
from the start. However, C_ seems to take a little more distance before

it compares favourably with the upstream calculations.

tiT, d ;r, d_
In Fig. 4c, where the comparison of the derivatives _- _ _
is shown for various starting points, the dashed portion

between x = -O. 35 cm x = -0. 1 cm is an extrapolation of the curve between

x =-0.5 cm to x =-0. 35 cm. (Thus the derivatives also merge into each other).

In the critical region the derivatives behave in a singular fashion. In Fig.

4d, the comparison between the results obtained starting at x =-0. 1 cm and

x = +0. 3 cm are shown up to x = +3.0 cm. Here again, as in the case of

variables themselves, they merge around x = I. 0 am.

Thus it appears from these comparisons that if one is not interested in the

finer details near the throat, the nonequilibrium calculations could be started

at a point downstream of the geometric throat, without incurring significant

error, thus avoiding the time consuming process of finding a nonequilibrium

mass flow for starting nonequilibrium calculations upstream of the nozzle
throat.

6. i. 2 Effect of the relative amount of energy in vibration

One is apt to think that, where there is only a small fraction of

energy in vibration, the assumption of vibrational equilibrium for the cal-

culation of the flow properties may be realistic. In Figs. 5a, 5b the flow

variables along the nozzle axis are plotted for T o = 5900OK and Po = 9.4 a_l_
For these conditions O_'o= 0. 9571 so that about 4% of the mass of oxygen
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is in molecular form and the energy in vibration is only 0, 3% of that in

dissociation. From Fig. 5b, it will be seen that while the vibrational

equilibrium model shows that _ freezes at 0.83, it freezes at 0. 885 and

0.915 in the coupled nonpreferential and preferential models respectively.

This difference is of the order of 7 and 10% for the two coupled models and

is not negligible. From Fig. 5a, there does not seem to be much effect

on pressure while on the translational and vibrational temperatures, there

is an appreciable difference between the results of the preferential and

nonpreferential models, for example at x = 3.0 cm, T./T = 0 04 and 0.05
O "

respectively for the two coupled models. The vibrational equilibrium re-

sults are taken from Ref. 8 where only the variation of o_ is given.

Thus it would appear that even if the energy in vibration is only 0. 3% of

that in dissociation, the vibrational equilibrium model may not be a very

realistic one for the prediction of flow properties, the effect of this being

largest on the frozen atomic mass fraction.

6.1.3 Importance of the parameter U

As is pointed out in Appendix B, in the most realistic case, one has
to consider U as a function of the vibrational level as well as the translation-

al temperature. Even for a single gas, this is quite involved and if one has

to deal with a mixture of different gases, U will have to be taken different

for different gases, thus making the problem a very complex one. For

these reasons, it would be of interest to know how useful are some simple

approximations such as U = oo , in which case it drops out as an addition-

al parameter, or U = _, /n where n is some number such that it can be

written down directly for all the gases in a mixture, instead of calculating

it for each gas as a solution of Eq. (B68) for its dependence on _)D ' _)v '
T t •

The importance of this parameter is again brought out very clearly in Figs.

4a, 4b for T o = 5900°K, Po = 82 atm and Figs. 5a, 5b for T o = 5900°K

and Po = 9.4 atm. Figs. 4a, 4b show that the effecL of U is quite irr, portant

on Tt, T v and _" whileFigs. 5a, 5b show that its effect is mainly on

O_ • The values of these at x = +3.0 cm for U = o_ andU = _/g for the

uncoupled model and for vibrational equilibrium model are given in the
Table below.
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TABLE Ill

Comparison of the flow variables for different dissociation models

Axisymmetric Hyperbolic nozzle, at

No.

i.

2.

Z = +3.0 cm, A/A,,', _ 63.

To(°K) Po(atm) Model Tt/To T v /T O

5900

5900

82

9.4

Coupled

U= _/6 o. 11

U=oc_ 0.14

Uncoupled O. 17

rib. eqm. O. 2 1

Coupled

U :8_/60. 04

U= cz_ 0.05

Uncoupled 0. 055

rib. eqm.

0.72

0.68

0.61

0.21

0.83

0.88

0.72

J

0.528

0.475

0.445

0.430

0.915

0.885

0.850

0.830

.

,

693

957

For case 2) by comparing o_ with O_e and T t with T v near _ =0 in Figs.

5a, 5b, it will be seen that the flow is almost frozen. This is also clearly

seen by comparing the frozen and starting values of _ namely, 0. 915 and

0. 928 respectively for the preferential dissociation model. For this case it

would appear that the assumption of completely frozen flow from the reser-

voir is as good as the preferential model. This can be seen by noting that

Tt]To for the fully frozen case is 0. 035, this is also shown in the figure.

For case 1), comparison of 0L and Ode and T t with T v near P¢ =0 in Figs.

4a, 4b shows that the flow is slightly out of equilibrium at the nozzle throat.

From these figures and the above Table, it would appear that the effect of

the Value of the parameter U is quite appreciable.

Thus the parameter U appears to be quite important and it would be very

enlightening to use the equation (B68) for U as a function of T t to give a

clear answer to the question posed in the beginning of this section.
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6.2 UTIAS II" x 15" Hypersonic shock tunnel:-

The preliminary calculations presented in Section 6.1 having demonstrated
that the calculations could be started downstream of the throat and that the

coupling of vibrational and dissociational nonequilibrium is important, some

further calculations were carried out for the experimental conditions,
obtainable in the UTIAS shock tunnel.

For these calculations U was always taken to be equal to _)_/6 and all

calculations were started at 0.25" downstream of the geometrical throat of

the primary nozzle shown in Fig. 2.

The flow deflection plate was inclined at 10 ° to the axis of the primary

nozzle. The terminal nozzle was single wedge type with an included total

angle of 15 °. The entrance section to this nozzle could either be ll" x 0.4"

or 11" x 0.7". Calculations were done only for the 11" x 0.4" cross section.

As explained in Section 5. II, the aim of these calculations is:

i) to consider the effect of vibrational relaxation tirrie, "UV
it) to permit evaluation of the realistic set of U, and "b'v values by

comparison with experimental data to be obtained in the near future (e. g.
Ref. 45),

iii) to consider the effect of variations in reservoir conditions,

iv} to provide theoretical estimation of flow properties in the test
section.

6.2.1 Effect of vibrational relaxation time _L/ :-

As discussed in Section 3.2.3, from theoretical (Refs. 37, 38) and experi-

mental (Ref. 23) considerations, it appears that the vibrational relaxation

times in expansion flows, (where the vibrational relaxation is from an ini-

tially higher to lower excitation), could be shorter than those behind normal

shocks, where the vibrational relaxation is from an initially lower to higher
excitation.

To study this effect, the calculations for the UTIAS Hypersonic shock tunnel

primary nozzle were done for three values of the vibrational relaxation time,

namely,

ex'p_n,_lon _ I. 0., o, I 0 ,o.5-

The values 0.1 and 0.05 were chosen since the pressure measurements of

Ref. 23 for vibrational relaxation of nitrogen in a nozzle without dissociation

were found to lie between theoretical values obtained by using these relaxa-

tion times. It may be noted that when there is a sufficient amount of oxygen

in atomic form, the atom exchange reaction (76) could be quite important

in deexciting the vibrations. However, this is not considered in the present

work. It is hoped that, if the cumulative effect of the atom exchange reac-

tions and the vibrationaily excited state of the gas are going to shorten the
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vibrational relaxation time for expansion flo,_s, the effect may be studied

qualitatively b_ reducing the vibrational relaxai.i.on i_,m..es determined behind
normal shocks.

The results of these calculations are pl.o_;i:ed in Figs° 6a, 6b, 6e, 7a_ 7b,

7c. When the vibrational relaxation time is shortened, the vibrational

state of the gas should be nearer to the translationa! state of the gas, io eo

T v --,- T t. As more vibraiionai energy is available T t w_ill increase s].igb,qy

thus decreasing relaxation times. For a Boltzmanr_ disi:ribut:ion of vibra-

%tonal energy distribution, this wi].i, lead to fewer number of molecules in

highly excited states as the trans].a_iona] temperatu.re is reduced. Because

the preferential dissociation mode], gives a higher efficiency for dissociation

from higher vibrational levels; the number of dissociations will be smaller

for shorter relaxation times. Since in this model° i:b.e recombination pro-

cess is essentially independent of the vibrational state of the gas, the num...

ber of recombinations will be independent: of the relaxation time. Thus tb.e

net effect of shorter relaxation time on Oz should be f.o reduce it s]igh_,ly-

because of the reduction in the number of dissociai:ionso Fig. 6a, 7a which

give Tt/To, T v /To W. zand Figs. 6b, 7b which give C_ t_. )_ show these

trends. It is also interesting to note that for shorter _v the dissociation :_'._-

nearer equilibrium for a longer distance as may be seen by comparing o<

with O_e . Reducing the relaxation times below DT = 0, 1 ham no observabl_

effect on _ for both cases treated here, wb.fle %here is a very small effect

on T t. For both sets of initial conditions, there seems _,o be an effect on

pressure for variation of Dq_ from. I. 0 to 0°l but no varia_:ion for a furi:her

change from 0.1 I:o 0.05. The density does hot seem to be affected at all blv

the change in /_, .
from the energy and

and

as follows:-

This effect on densff;y and pre_ssdre car.:be explained

contirm, i%y equations:

f _"A =: Cons_an%

The decrease in _ and T v in the shorter relaxation time case decreases

the vibrational and dissociationa], energy con-tribution t.erm in h, whi].e ].he

increase in T t increases the translational, and rotation e_ergy contribukions

(i. e. 7/2 RT t) from the molecules° The translational energy con.tribu_:ion

of the atom 3(_,,RT t remains approximaie!y consiant since _ and T t vary

in opposite directions. The net effect: wii]. be %0 keep h approximately

constant or increase it s]ighl:ly and thus _r either remains constant or de.-.

creases slightly which in turn keeps _ approximaf, ely cons%at,.]: or increases

it slightly. From the state equation. "_=- _T_[I-_o_) =-J_RT__[1-0_¢ _ )
it will be seen that p should increase Slightly for shorter rM.axatior timr_so

The molecu].ar and atomic contributions are shown separately, so that. ik

can be seen that white the atomic con1 ribution (2.,4 _RTt) remains approxi--

mately constant because _ i.s decreasing and T t is increasing the mole..

cul.ar contribution '( . (i.-.,4)_ RT t) increases since the effects of 1 - and
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T t both contribute in the same sense• Neglecting the decrease in the vibra-

tional contribution relative to that in dissociation and translation-rotation,

one may say that q and hence _ will change appreciably if the changes in

c_) T t are such that

For example if Tt/eD _ 0.02, _Z<0.07 or for__Tt _ 0.1, _/<0.35,
Such situations may occur only for relaxation _

for very high pressures since for a given temperature, the dissociation level
decreases with increase in pressure. Thus if one wishes to ascertain the

effect of _v from experiments where density variations are measured one
may be able to do so by starting with initial stagnation pressures of the

order of a 1000 aim. This figure is quoted since for oxygen for such pressure

and temperatures of the order of 6000°K, the initial amount of dissociation

in the reservoir will be relatively small and thus will be able to satisfy the

above condition. However, for such pressures, the changes in pressure

will also be significant, and these are easier to measure. However,

direct measurement of ¢ more readily allow estimation of _ . Of

course the ideal measurement would be to obtain the vibrational temperature

T v directly.

The velocity

Figs. 6c, 7c.

_-//RJ_o and the frozen Mach number Mf is plotted in

Since Mf = _//_c and

(106)

a decrease in C_ will tend to decreas$ _ _ towards the completely un-

dissociated limit. Because the effect of decrease in _'v is to increase _9

and not change _ (_ may remain roughly the same or may increase

for decreasing "_v . -Then the frozen Mach number Mf will decrease for

decreasing _v Figs. 6c, 7c show that there are v_,_ _=_• k., .L JL ¢_.L.L _ _,, b._

in q while the effect on Mf is more pronounced and further the trends are as

suggested above.

Another point to be noted from Figs. 6a, 6b and 7a, 7b is that while b/

freezes, though at different levels for the different _v the vibrational

temperature T V does not. This has an important bearing on the compari-

son with experimental results in the test section to be discussed at a later

stage.

Thus, it seems that for highly dissociated gases (Fig. 6a, 6b} reduction

in "_v reduces the level at which cg freezes, increase T t slightly, and

brings T v very near to Tt, T v does not freeze and p is slightly increased,

, q remain constant and Mf decreases. For the case of lower C_ the

effect on c_ is negligible while the effect on all other variables is the same

as in the highly dissociated case, though less pronounced.
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The results for the other experimental conditions given in Table I are pre-

sented in Figs. 8a to 8d, 9a to 9d, 10a to 10d. All of these show the same

trends as discussed above. The values of Tt, T v ?o f od at the end of
the primary nozzle are given in Table IV.

6. 2.2 Effect of variations in reservoir conditions:-

It was pointed out in the earlier section that there are variations of pressure

in the reservoir which induce variations in reservoir temperature. It was

felt to be of interest to see at least qualitatively how this will affect the

pressure in the test-section. For this purpose an arbitrary condition go =

22.45 arm. and To - 4600°K which is such that its temperature is near that

of case 3 and its pressure is near that of case 5 given in Table I was con-

sideredo It may be seen that the relative pressure and temperature varia-

tions are exaggerated ( 22.45 , 4600 or 39.46 , 4630) . This has been
22. 1 4800 22.45 4600

done to enhance the effect. The test-section results for these cases are

compared in Table V below:

TABLE V

NO.

(1)
(2)
(3)

(i)

(2)

(3)

Effect of variations in reservoir conditions:

lo 39.46 4630 0.341 0.165 0.516 0.036 0.140x10 -5 14.33 0.204xi0 -5

22.45 4600 0.418 0.254 0.392 0.023 0.833x10 -6 17.03 0.146x10 -5

22.10 4800 0.524 0.340 0.351 0.019 0.655x10 -6 18.59 0.127x10 -5

0.05 39.46 4630 0.341 0.160 0.531 0.044 0.176xi0 -5 13.36 0.249xI0 -5
22.45 4600 0.418 0.239 0.428 0.033 0.131x10 -5 14.81 0.212xi0 -5

22.10 4800 0.524 0.314 0.401 0.029 0.114x10 _5 15.63 0.19_x10 -5

From this Table, it may be seen that even very large variations in reservoir

pressure or temperature will effect the ratio _' / "_o the test section only

by a small amount for DT = 0.05 or 1.0. Decreasing reservoir pressure

or increasing reservoir temperature seems to decrease test section static

pressure ratio P, / _o • Since the main uncertainty in the reservoir con-

ditions is that of temperature, which is not measured, a rough estimation

of this effect may be made by taking the temperature ratios and the test-

section static pressure ratios between cases (2) and (3), denoted by T023,

P123 and the ratio P123/T023 denoted by TPR.

l_or 2) T= ].0,

T023 : LTo_ _-_oo
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For _'C = 0.05

.,3/_

with boundary layer taken into account TPR for D _ = i. 0 is I. 103 and for

D_ = 0.05 is I. 032.

Taking T02 of Table I as the possible correct temperature, the change in
( "P, / _ )theo for changes from Totheo to T02 are calculated below as

( _)l / _>: )estimated = ( _, / _o )theo *TP.R *( To )theo/T02 °

TABLE VI

Possible effect of uncertainity in reservoir temperature on test section slatic

pressure:
No. PT, _ :r,_v,',_c,,cl _,';h B. l_.

(I) 1.0 8..03 1.020 0.111x10 -5 0.125x10 -5 0.168xi0 -5 0.189x10 -5

(2) 9.62 1, 007 O. 140x10 -5 0.172x10 -5 O. 204x10 -5 0. 227x10-5

(3) 9.63 1.033 0. 681x10 -6 0. 858x10-6 0.132x10 -5 0. 150x10 -5

(4) 11.00 1. 011 0. 655x10 -6 0° 808x10 -6 0.127x10 -5 0.142x10 -5

(1) 0.05 8.03 0.155x10-5 0.174x10-5 0.224x10 -5 0.236x10 -5

(2) 9.62 0.176x10-5 0.195x10-5 0.249x10 -5 0.259x10 -5

(3) 9.63 0. lllxl0 -5 0.126x10 -5 0.194x10 -5 0. 207x10 -5

(4) 11.00 0. ll4xl0 -5 0.127x10 -5 0.197x10 -5 0.206x10 -5

_/°-_ and M From theTable V also gives the ratios _/ TD ) _. I
Table it will be seen that the effect of increasing reservoir pressure or de-

creasing reservoir temperature is to decrease the first two ratios while it

increases MI •

6.2.3 Realistic set of U, "_¢ values:-

The effect of the parameter U in the dissociation rate expression and of "_v

the vibrational relaxation time on the flow properties in the nozzle was considered

in detail in section 6.1. 3 and 6.2.1 wherein it was found that both of these

effect considerably Tt, T v , _ , and to a lesser extent _) and Mf. By

comparing the theoretically obtained results with experiment, one should be

able to determine values of U and "_v values which may be used in the rate
equations.

6.3 Other Points of General Interest
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6.3.1 Coupling Factor:

It was pointed out in Section 4. I.I.4 that the coupling factor V, which is the

ratio of kdn eq for vibrational nonequilibrium and kdeq for vibrational

equilibrium, would have to start with a value equal to 1 at the start of the

nonequilibrium calculations and would have to increase as the flow departs

from equilibrium and then should decrease and finally tend to zero as disso-

ciation freezes out.

To demonstrate this point, the coupling factor V is plotted as a function of

area ratio in Figs. lla-d. Fig. lla shows the effect of the parameter U in

the dissociation rate constant while Figs. llc-d show the effect of "_'v for

three different cases with U fixed at @D / _ •

From Figs. 4a, 4b, for Tt/To , Tv/To, _ , d e for To = 5900°Kandpo =
82 arm., it is seen that Tv and oe begin to freeze rapidly around A/A-_,5.

From Fig. lla, which gives the coupling factor for this case, it is seen

that around this area ratio V increases rapidly. V is seen to be larger for

the preferential model than that for the non-preferential model because of

the relative amount of nonequilibrium and different freezing values of oe' ,

T v as seen from Figs. 4a, 4b. At an area ratio of A/A"." _ 63, it was found

that VPref_1033 and Vnonpref _ 1023 and they were still increasing.

From Figs. tlbto lld, it will be seen that the effect of decreasing '_'v from

its normal shock value, while keeping U constant at _ /6 , is to slow down

the increase in V up to a much larger area ratio and even shows towards the

end a decreasing trend as was expected in Section 4.1. 1. 4. The D'_ = 1. 0

curves in these figures correspond to the preferential case of Fig. lla and

show the same behaviour as in Fig. lla. The decreasing t rend towards the

end of the primary nozzle is shown by all the three sets of reservoir condi-

tions for D'_ =0.05 while for D_" = 1.0, it is shown only forpo = 22.45 arm.,

T o = 4630°K. V reaches much smaller values in this case compared to those

of Po = 22.1 atmo, To = 4800°K in Fig. lld. This means that for high re-

servoir pressures leading to smaller initial amounts of dissociation in the

reservoir, the effect of the coupling of dissociation with vibrational non-

equilibrium is not as large as it is for low reservoir pressures which give

higher amount of dissociation initially. This is already shown in Figs. 6b

and 7b discussed in Section 6.2.1 where the effect of DI_ variation on the

freezing value of _ is seen to be much smaller for the high pressure case

of Fig. 6b than for the low pressure case of Fig. 7b.

6.3.2 Relaxation lengths:-

The quantities q/_f and q _¢

vibrational rate equations

occurring in the dissociational and

u

m
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have the dimensions of length and are defined as characteristic relaxation

lengths for dissociation and vibration. Rewrite these rate equations as
follows:

(_ -- _ --Q_ (117)
d_ -- _d

and

where rd = q ( 0( - _geO ) / (VL-I ) (119)

rv: _V'Cg-_.-e_j _l_-_.P'_-e_ -'
_ __ + _7;--_ _ (_2o_

and _('e.._

dissociation are very near equilibrium,

and _ _¢ << /_V
V

is the local equilibrium value of c_ • When vibration and

then _ _ 0_el and _ev

5,',ce/¢-_a/<<%_ o21)

5,',,_'/_- 6/<<?'- o22)

When vibration and dissociation are very nearly frozen

Thus

and

(123)

(124)

Hence the transition from equilibrium to frozen conditions means that the

quantities _DM t____ / and -_ I---_] change from avalue

very much less than unity tb a value very much gz'eater than unity, One there-.

fore may be able under these circumstances to predict approximately the

frozen values of Od and T v by assuming that this occurs when

____ I___W I and -V.._ I_.--_-g I become equal to unity.
This will not help very much since this still requires the knowledge o_

these quantities in nonequilibrium flow, Hall and Russo (Ref. 8) in their

calculations for dissociational nonequilibrium only evaluated the quantity
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Rd --6_ for equilibrium flow that is for infinite rates. By replacing

I_/e2 by _/_/ and 0_byl/2c_e_ where Cx/e_, isthe

infinite rate flow or complete equilibrium flow result the quantity r d was

also evaluated at the infinite rate flow values and they found that this predicts

the final freezing value of _< with reasonable accuracy.

If it is assumed that this may still be valid for coupled vibrational and disso-

ciational nonequilibrium, then one may say that the frozen values and their
location are obtained when

-- /_ (126)

where _>_ corresponds to the vibrational energy in complete equilibrium

flow. The derivation of Eqs. (125) and (126) implicitly assumes that vibra-

tional and dissociational nonequilibrium are uncoupled, so that Eqs. (119)

and (120) for r d and r v are to be rewritten as

and

where primes denote the relaxation lengths for the uncoupled model. Eq.

(127) may be further simplified by rewriting L in terms of P< , _/e_' as
follows:

L_ (129)/

............ :_:_: ....... +-_,_+ Kc _,_,4 ÷h_ lno_l _qui]ibrium 0_. are8iYIc@ 1,I1_ /UtSi:lJ. ct4.ui...i.u..I.U.LLt .........

related through Eq. (60). Hence _c

- (130)
l_- / "--

L¢(, )
and

By evaluating this at equilibrium conditions, one has

(132)
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where the subscript e denotes complete equilibrium flow values. For the
coupled model r d cannot be simplified to the form (131)because the factor V
rapidly becomes larger than unity. To see how much r d differs from q/_
because of the factor (VL-1)/ ( 6( -- _'_l ) and also how much r v differs

and
from _r_ and how much these differ from _e /_

the effect of the parameters U, 'D_" on _/_ and

following quantities have been computed, namely,

(D87)

p£LI= _'y' :4_'4

VE_LI = _ _v -- 4v_'

(D88)

(D85)

(D86)

where the quantities on the left hand side are Fortran names and _" is a

non-dimensionalisation constant defined in Appendix D. These are plotted in

Figs. 12a-12h. The way in which the quantities rdl, rvl , rvl differ from

each other as the degree of nonequilibrium inci_eases can be seen as follows.

At the beginning when everything is near equilibrium, _/_°4c4-_ _Tt> _/_I

and thus using Eq. (130) and replacing o(e_by c_'

rd¢ = 4 _ -z_ j/_',,'z..-,;

,,, _'_,e # ..Z ,._
_d} .'-'_'.,,2_,._.(134)
(.2 .._J '_d_',

and also _ _- E" thus from Eq. (120)

, _'ltL (_--.;O/6"&-f w,d + 77;G w

(135)

-/

,-/ ' , :<- <+-,,,>./

/ _"_-_.d _-&
_, ox-o¢; &-,,/

-!

--! (136)
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or rvl _ rVll

As frozen values of Tw

rvl

ad ,' '
Also rd_ < rdl I and rvl _ rvl ] for the same reasons given below Eq. (137)
Figs. 12a to 12h show these trends, that is, we always have rdl < rdll and

rvl ,-_ rvl I.

The value of rdll for full equilibrium flow should be greater than rdll for

nonequilibrium flow since T t neq < T t eq and qeq > qneq so

from Eqs.

and

@ 7- -n -_I

>
(86), (III),(I12). Thus

= (139)

This comparison with equilibrium values is shown in Figs. 12c and 12d where

it will be seen thai near the throat, when the flow is very near equilibrium

(rdll e-) _ (rdl I ne _) and (rVll e _) ,_ (rVll neq) and as the nonequilibrium

increases (rdll nea) and (rvll nea) curves depart from their equilibrium

counterparts showing that (rdll eq) _ (rdll neq) and (rvli eq) < (rvll neq).

The effect of the parameter U on rdll and rVll is similar to that of the equili-

brium case, namely,

(142)
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since TtnD > Tt pref where the nonpreferential and preferential cases are
distinguished by the subscripts np and pref respectively. These trends are

shown in Figs. 12a and 12b. The differences in 0dpref and C_'np appear to

be sufficiently large to reverse the above trends on rdll, i.e. from Eq.

(138),

(rdll pref) _ 0_pref " (rdll pref) ._ C_/np • (rdll np),_-_ (rd_n p (143)

where ¢_pref > _'np from Fig. 4b whereas this reversal in trend on rvl

appears to occur only when the amount of nonequilibrium is relatively large.

From Figs. 12c to 12h, it appears that the effect of variations in vibrational

relaxation time "_'v is significant only on rvl, rvll and seems to make only

slight differences on rdl, rdl_; namely, the reduction in vibrational relaxa-
tion times reduces the vibrational relaxation lengths as is to be expected.

The question as to how good is the frozen value of

of equilibrium flow results may now be answered.

the frozen value of _ may be considered as that obtained when

or using average equilibrium flow values, from Eq. (125)

C_' predicted on the basis

It is stated above that

(144)

(145)

from Eqs. (125), (132) and (139). From Figs. 6b and 12c, it will be seen

that (rdll eq) begins to depart from (rdl ne when significant freezing in o(
begins namely A/A, _ 4. Also from [_ig. %b, it will be seen that d _

is approximately equal to (_eq'_ Thus it appears that for an

engineering approximation, the frozen value of C_' may be predicted reason-

ably well on the basis of Eq. (125) evaluated at equilibrium c6nd_tions.

Similarly the frozen value of the vibrational temperature T v is given by the
condition

rv • '] (::/_v I = 1 (146)

I I
or evaluating at equilibrium flow values, from Eqs. (126), (133)

dTt _ _tdTv_ at the point
From Fig. 6a, it will be seen that for D _ = 1, (_ "-_'tneq

where T v begins to freeze rapidly, i.e. for__A _ 10 whereas from Fig. 12d,
A*

56



No.

it will be seen that (rvl 1 eq ) has already deviated considerably from (rvl e )_ _nq
for A/A*_I0. For D_ = 0.05 and 0. i, Fig. 6a shows that T v is freezing

only slowly. However, (rvl I eq) departs from (rvl I neq) for D _ = 0.05
around-A/A, _ 4.0, and for D'_= 0. 1 as early as A/A* -_/ l.l. Thus for

D "_ = 0.1 and 0.05, the criterion of Eq. (147) for freezing value of T v does
not seem to be useful, while it may be useful for D _ = I. 0.

In Table VII below, the freezing criterion for o< , is applied to all the cases

of Table I. The values of l_dll, d _ and their products when this criter-

ion is approximately satisfied and _'T the corresponding value of

and A/A* the corresponding area ratio, and _'_ the finally frozen value
of _z" obtained by full nonequilibrium calculations and the reservoir condi-

tions Po, To, °i o are given in the Table for D = i. 0.

TABLE VII

Comparison of _[ found by freezing criterion (144) with finally frozenCi_

=I. 0

M S

(rdl d_-_ ePo To _( A/A* (rdll_ne q d _( 1 _- _
(a_'m) d >_ne q q

I,

2.

3.

4.

5.

8.03

9.62

9.63

11. O0

20.82 4040 0.183 9.99 0.970xi0 3 0.100xl0 -2 0.97 0.096 0.090

39.46 4630 0.34110.-34 0.256xi0 3 0.338xi0 -2 0.87 0.181 0.165

14.18 4350 0.364 5.12 0.152xi0 3 0.475xi0 -2 0.72 0.249 0.238

22.1 4800 0.524 6.27 0.843xi0 2 0.645xi0 -2 0.54 0.356 0.340

22.45 4600 0.417 9.99 0.270xi0 3 0.258xi0 -2 0.70 0.264 0.254

7. CONCLUSIONS

A theoretical study has been made for quasi-one dimensional

nozzle flows of pure dissociated oxygen for coupled vibrational and disso-

ciational nonequilibrium. It is assumed that the probability for dissociation

from various vibrational energy levels may be represented by an exponen-

tial function containing an adjustable parameter U. This takes into account

the effect of vibrational nonequilibrium on dissociational rate. It is

assumed that the vibrational nonequilibrium may be represented by a vibra-

tional temperature which is different from the translational temperature.

The effect of dissociational nonequilibrium is taken into account by modi-

fying the classical Landau-Teller equat ion for vibrational relaxation through

addition of two terms for the average energy lost due to dissociation and

that gained due to recombination. Two values of U have been used in these
calculations: I) U = _<_ giving equal probability; and 2) U = _m /6 giving

higher probability for dissociation from higher levels. These two models
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are called non-preferential and preferential respectively.

The effects of exchange reaction between atoms and mole-

cules, and relaxation from higher to lower vibrational excitational state

on vibrational relaxation has been studied qualitatively by shortening the

vibrational relaxation times observed for flows behind normal shocks.

This has been done for the preferential dissociation model only that is

with U: ¢,/6.

The values of the flow variables in the test-section of the

UTIAS 11" x 15" Hypersonic shock tunnel were calculated by assuming the

vibration and <tissoeiation to be frozen at the end of the primary nozzle.

Boundary layer corrections were applied to these inviscid conditions in

the primary nozzle using an empirical formula for the evaluation of bound-

ary layer displacement thickness for turbulent flow under the assumption

of frozen boundary layer.

The results show that:

I) The nonequilibrium calculations may be started downstream of the

geometrical throat at a point where the frozen Mach number is greater thar_

unity, thus reducing the computer time.

2) Even if the amount of vibrational energy is initially small compared

to that in dissociation (due to a very high degree of dissociation), one has

to consider vibrational nonequilibrium and also the effect of coupling to

predict a correct finally frozen value of O<"

3) The finally frozen values of Cx' and T v for the preferential disso-

ciation model are higher than the nonpreferential values. Both of these

are found to be higher than those calculated for the uncoupled or vibration-

al equilibrium models. The translational temperature T t for the prefer-

ential model is found to be lower than that for nonpreferential model.

4) Shortening of vibrational relaxation times below the normal shock

values reduces the level at which the atomic mass fraction freezes finally_

This reduction is more significant for nozzle expansions with a higher

initial degree of dissociation. It also brings T v nearer to T t as is to be

expected and does not show T v to freeze even up to an area ratio of about

50. It also slightly increases the pressure while there is little effect on

density.

5) The coupling factor, or the ratio of the dissociational rate constant

for vibrational nonequilibrium and equilibrium increases rapidly as _"

begins to freeze rapidly. It continues to increase even up to an area ratio

of A/A* ._ 50 for U = _ /6 and normal shock vibrational relaxation
times. For U = _D /6 and vibrational relaxation times shorter than

those behind normal shock, it begins to drop rapidly around A/A,'.c _ 50

after reaching a maximum. It is felt that if U is taken as a function of Tt_
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even for _ = "_v normal shock, the decreasing trend may be obtained.
This U, Tt relation as derived in Appendix B is

where a, : is known constant , Z o is the collision number, _D is char-
acteristic temperature for dissociation and Q(Tt), Q(-U) are given by

Q(Tt) = 2 _-Ej/kT t

Q(-U) = _: e Ej/kU

6)
value of o( ,

tional length rdl 1 and the _d_
of order unity, Seems to be good.

For a fast and approximate evaluation of the finally frozen

the criterion that the product of the dissociational relaxa-

, evaluated from equilibrium restllts be

7) It is anticipated that comparison of the theoretical computa-

tions given here with experimental measurements of c_ taken in the

UTIAS 11"x 15" Shock Tunnel (Ref. 45) will enable realistic values of

_v and _] to be determined.

8. SUGGESTIONS FOR FURTHER WORK

Two important modifications can be carried out immediately:-

1) Use of a proper U, T t relation given above instead of taking U con-

stant and independent dI Tt.

2) Taking account of the atom-molecule exchange reaction in the vibra-

tional relaxation equation by means of the rate constants given in Eq. (8_).

3) Modifying the fractional number of collisions M(D-E_ ) with relative
energy greater D-E i to take into account the internal energies of the
particles entering ir_to collision, i.e. writing

) = (D-Ej" ]kTt )J /)! e-(D-Ej )/kTtM(D-%.

instead of the exponential factor alone, where J =1, 2 for atom-molecule

and molecule-molecule collisions respectively.

4) Application of this model to the flow around a corner to see if a de-

excitation shock occurs behind the tail of the expansion fan as found by

Glass and Takano (Ref. 5) with vibrational equilibrium model. (This work

is already in progress - July, 1966).
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NUMERICAL CONSTANTS

Universal Constants :-

Boltzmann constant

Planck constant

Avogadro number

k = 1. 380 x 10-16 erg/OK

h = 6. 620 x 10 -27 erg. sec.

N A = 6. 027 x 1023 per mole.

Constants for Oxygen:-

g01

g02

Or

= 16 gm / mole

= 9 )

)
= 3 )

)
= 2.08°K )

-- 59390OK

Eq. (A. 16)
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APPENDIX A

ThermodYnamic Equations

With the assumptions I) to V) of Section 2, the thermodynamic properties of

a pure dissociating diatomic gas in vibrational and chemical nonequilibrium

can be derived. The gas mixture is composed of atoms and molecules and

divided into two subsystems, I) consisting of the translation and rotational

degrees of freedom of the atoms and molecules at temperature Tt, and II)

the vibrational degrees of freedom at temperature T v.

Let N- be the number of i narticles in the volume V and _i _."

#W J " " ' " 'be the partition functions associated with the translational, rotational

a_d vibrational degrees of freedom (j= 1 and 2 for atoms and molecules respec-

tively). Then the Helmholtz free energy A of the mixture for the total

number of particles N= 7, Nj in the volume V is (Ref. 29)

/_ = /_t -_/_ "_ /_v (At)

where

_

A¢ , A/_ , Ay being the I-Ielmholtz free energy for the subsystems consist-
ing of the translational, rotational and vibrational degrees of freedom re-

spectively. The partition function is

(A4)

where

_oj = excess energy of the ground states of the j particles above the

reference energy level.

goj = probability or the statistical weight of the ground energy level

 oj.

mj = mass of a particle of the j species.

k = Boltzmann Constant.

h = Planck constant.
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It was pointed out in Refo 16 that goj are essentially the electronic partition

functions for atoms and molecules and may be taken as constant for oxygen

in the temperature range 1500OKto 8000°K°

Since atoms have only translational degrees of freedom,

_C2zJ _ _v)
"1 J I

(A5)

while for molecules in ground electronic energy state,

-2 _k
where (_& is'characteristic temperature for rotation; and according to the

harmonic oscillator approximation where _v is the characteristic temp.-

- _,/_ ] - Ierature for vibration. ?;_'J ---- [ / -- C ('/_7_)

From classical thermodynamics, the entropy of the mixture is (Ref. 29)

where _p, = _g ,, _-_a =O , as given in Ref.

the characterisUc dissociation temperature. Now

-I

is

(A8)

CA9)

(A]0)

(All)

(AI2)

(AI3)

(A]4)In terms of mass fractions
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where _>_ is the atomic mass fraction, R is the gas constant per unit
mass of the diatomic gas, Thus for the specific entropy s of the mixture,

- _- + :,-e-'_# /.=._rd'_7
l_ + _ * ,. Ll (AlS)

+_d@/Og:_h.1_)3 /,#

N_, ::-e :'_<= h"

In terms of the characteristic dissociation density

entropy "(_4 , defined by

" *0,

and reference

(AI6)

(AIT)

where T r is a reference te:,perature, the expression for the specific entro-

, l,+_) ÷ #l v_O-._O0__-o,h-,9

(A18)

The internal energy can be written as
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--hN. e__/

J (A2 1)

The specific internal energy is

e =FF = ?-F ,

= fV fv -

or with the aid of Eqs. (AI3), (AI4),

= _It_ ÷_), c,-_,JRG_ +eo.,_. -i

The pressure is given by (Ref. 29)

- V

or with the aid of Eqs. (AI3), (AI4),

The chemical potentials are (Ref. 29)

(n_ +_,,,*,';,.)

(A22)

(A23)

(A24)
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Thus the chemical potential for the atoms is

(A25)

For the molecule, the chemical potential is

--_ . -- + 7-# -
't, - l'V ._ I

=__ _,._/,d _ v -' (A26)

The specific chemical potentials gl and g2 for atoms and molecules respec-
tively are

(A28)
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where

(A29)

(A30)

The specific enthalpy h is

from Eqs.

_E,PY--e÷ Ph -- ?v - fv

(A22) and (A23)

(A31)

For vibrational and dissociational equilibrium, one has the condition that

the specific chemical potentials of atoms and molecules be equal for a pure

diatomic gas.

i, eo

_! ---- _ (A32)

(A33)

Then from Eqs. (A27), (A28), it can be shown that

I -_e

(A34)

where C/e is the equilibrium value of _ For thermal and dissocia-

tional equilibrium, the last term in Eq. (AI8) for entropy vanishes by vir-

tue of Eq. (A34), giving a relation between _e and T in terms of entropy

which can be derived in a slightly different fashion starting from differential

flow relations and Eq. (A34) for complete equilibrium flow. (See Appendix

C)

This relation is

_o¢.2 _/"_,)_v.7_{'/-_)--_ _/'f'/t c j(-.-_ ",./7_P: /__ ._-,df_
c on st ant

(A35)

Entropy Equation

Eq. (AI8} may be differentiated to yield an equation for entropy change in
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l

vibrational and dissociational nonequilibrium in terms of d_ v , g/_/, d$ ,

df as follows:-

(A36)

,d_,,

•.. &
-/-

_uj

T_ z %//" T,x

which is the same as given in Her. 16.
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APPENDIX B

Derivation of the Rate Equations

The exact equation for the net rate of change of molecules in the vibrational

energy level j with energy Ej is (Eq. (80) )

d_ -

which under the assumptions given in Section 3. 3 simplifies to

dr_.7_._ __,.__,,r4,Jr,_=J- _:_,+,r,S,Tpm=J_4,_,I4,-4,!7

where the relations (70),

(80)

(7i) between _V'--O-! and _.,,_.#/ are used.

Dissociational Rate Equation

The dissociation rate equation is obtained by taking the sum of equations of

type (B i) for all the vibrational energy levels, namely

_. - ._ __ = -.__,orA_..r._g_,_+_r_.,.._
•" t" _'-I

(B2)

It may be shown that the sum in the first bracket in Eq. (B2) is zero as

follows :-

For level (j+l) and (j-l), the first bracket in Eq. (B2) is

(B3)

(B4)
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Adding (B3), (B4) with
(B5)

gives

Let j=o be the ground level and j=J_the last level. Then for j=o, the expres-
sion in the first bracket of (B2) is

(B7) •

-
while for j=2_

But the term exp ( --'_//_T ) (£+ 1 ) [ /_] is due,to the molecules lost

to level ( _+ i). As the number of levels is only 2, this term should be

zero. So also r_+, _ =0. Thus for level j=2, one has

But the negative of the sum of (B7) and (B9) will be the net result of summa-
tion over the levels j=2, to j=l-_.

Thus

ZZ j

(BIO)

(Bll)

where Z_ and Z._ dissociational and recombinational rates for level Jmole
Under the assumptiohs of Section 3. 3 and specialising for collisions with

cules only (i. e. replacing [g_ by _/_z] ).

while

Zo is the total number of collisions per cc per sec, per unit concen-where

trations, c is a constant, _'_q, = N 2 is the concentration 65 the total number

of molecules, _'_'_ = NJ is the concentration of the number of molecules

in vibrational level, j, _, = _-LD-_j)/_I]. is the probability or effi-
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ciency for dissociation from level j,

of collisions with energy greater than D-E.
Jfrom statistical mechanics as

M(D-E.
J

and M(D-E j ) is the fractional number

) may be written

(BI4)

where T t is the translational temperature and D is the dissociational energy

of the molecules. In terms of an overall rate coefficient kd,

E_q_%_2- zz_ = f_mj _ = _._ _,_,
FromEqs. (B13), (B15)

_- "Z,_4 -- Zo_C_, N4 N.,_M (_D-ej) (B16)

or

_ zocZc-cD-_j),,_¢_QTe__z-_D-<,_, _ (s_7)
Under the assumption of Boltzmann distribution in vibration at a tempera-

ture Tv,

Thus

__ e-@/_T_

'_-'_- zocz-e-c_-_'N°z E_/_',,
Tv=T t andFor the case of vibrational equilibrium with translation,

.(Bi8)

(BI9)

[_z_zo_ZEc_-_,y_ue-_'/*T` _Z e -E'_'/_ T_ _ ('D'_')A T_- (B20)

Dividing _q. (Big) "UytD_u,-'_ _._A _.._A_'+_'_o...b+ho....o_xpressions..... containin_ the

summation of exponentials by Q i. e.

_{TJ -----Z C -_'_T (B21)

where
I __ L__]___L

T--T, T_ U

(B22)

(B23)
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Thus the rate equation (Bll) reduces to

- -v/_a_.ra_ _* ¢,¢_]_'r,_>7

taxi (B24)

where K c is the equilibrium constant

_' = _._
Let the atomic mass fraction be _ ,

where r_. is the partial density of atoms and

[A_'_ and [_'_ may be shown to be (see Ref.

_, = F,_]--_

ffO-,"_
N';. = Dq_.7-- ,_m_

where m a is the mass of one mole of atoms and

(B25)

(B26)

is the total density,

m a = m N A gm mole

where N A is Avogadro's number and m is the mass of an atom.

total number of atoms is constant,
/

_'/_2_'_ /'A] = constant

(B27)

(B28)

(B29)

Since the

(B30)

Differentiating

'dr + -- 0

or

wfA,l
_---2 dt (B31)

Thus df_] _'/_IJ

(B32)
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or

d trv</AJ_ _ ¢__fD'<.__po-°v.gvXc
f _ _./"_a_

D--_J J
(B32)

Eq. (B32) is taking into account only the molecule-molecule collisions. For

the atom molecule collisions, from the assumption _dO, = _ _o(_1

dt

-- - 7_it,Fl'4_7tlV' K_ z-i+]_ ']

/ V K"c d-lJJ1/

7V- _r -

3 3

-z_ 7 - _/ t
(B33)

(B34)

Adding Eqs.

dt -- ¢_2 i

= f y (_'c -,)

(B32) and (B34), the net rate of mass production of atoms is

_qa ( l-_J -- I _ (B35)

>'P °'" _ b

(B36)

where _ m G7/l _tz (B37)

By the use of species continuity equation,

- ,-_{_L - ,)

one finally gets

(B38)

(B39)
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Vibrational Rate Equation

The vibrational rate equation is obtained by multiplying Eq. (BI) by the

vibrational energy Ej for level j and summing over all the energy levels,

i.e. 4

_---z--2_'_ =-£o -- '_

ConSider first the dissociation term for molecule-m01ecule collisions,
_,.

where _-! is the average energy lost per mole (N 2 is:the number of

moles per cc),

•4- ' N¢ . "-
• " E_j

where T t is defined in Eq.

e-z_'c -P'4; _ 4w
c Z. Q_'r,} -- '_cTH

which when substituted in Eq. (B42) gives

(B23). From Eq. (B19)

• . . .

(B43)

where _ (T_) is defined as

(B44)

From the assumption of ;_ =/_r_1 , the E for atom-molecule collision

iS .

(B46)
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Thus for the complete dissociation term,

(B47)

For the recombination term for atom-molecule collisions

1 &

NOW _t and _4,? can be written in terms of Kc, _d_3
(See Eq. (B89), _'

-_,_--
/K¢

J / r" Jl. _

- _n_.2_._/

G e

From Eq. (B20)

6_&o)/-

From Eq. (B90),

/__z/A,--_z a

SO

#,- & (s _;_._:-9'

as

(B20)

(B48)
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For molecule-molecule collisions, under the assumption

, = 4,

----A _,,,S/4732 . (-uJ
(B49)

For the complete recombination term

=  e3/e <'-.J
(B50)

where ___j, e F-v'/_ U (B5D

$ = _c-o) - _ <-u)

The remaining terms in Eq. (B40) are due to internal changes of the number
of molecules in each vibrational level and these terms are reduced to the

form

(_'_ - _-_,_z_ (B52)

where E_i _ is the vibrational energy calculated at the local translation

temperature by the Landau-Teller model. Thus the vibrational relaxation

equation is given finally in the form

From Eqs.

and third terms in Eq. (B53) are simply

respectively. Thus

__<_-.>-E,,_ l;v,/,'/_..._-+ s_
dr" "_v ,am,,. ,_ m._..

(B35)-(B38), it will be seen that the coefficients of the second
P l'_' VZ"" and

(B54)

It may be noted that the vibrational energy E v in the above is the total

vibrational energy for N 2 moleslcc

(B55)

where _v is the specific vibrational energy, and N A is Avogadros
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number. Since _v is used in the total energy equation, Eq. (B54) may
be written for _v as follows:-

J/_ (B56)

and from Eqo (B28), N2 = p(,,-.O_ , thus

d_v_ / /dE.,

•._',, E-v."

(B57)

or

where now E and G are specific energies.

Determination of the Parameter U

In the collision model for chemical reaction of diatomic molecules, a

parameter U with the dimensions of temperature is introduced to describe

the efficiency or probability of dissociation from a given level by writing

this efficiency as

- e
It is implicitly assumed here that the parameter U is independent of the

vibrational level. Under the most general circumstances of nonequilibrium

between vibration and translation i.e. for a non-Boltzmann distribution in

vibrational energy, U has to be taken as a function of the level _ or its

vibrational energy Ej and the translational temperature T t i. e.

If the dissociational rates from different energy levels are known indepen-

dently, then Uj can be evaluated from the relation between and _
nan_ely,

2_,i- __o_(._, %,)_- _ -c

-
(B60)
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which can be solved for Uj knowing _

of Boltzmann distribution in vibration, _if

nonequilibrium, one can calculate U as a function of T t and T v

U (T t ,T V ) from the relation

_,a- L cz.e-c_%'/_ _ -_-_')/_ rtN-, e

and T t. For_a less complex case

one knows "_4 for vibrational
i.e.

(B61)

where _ and T t are known and Nj may be expressed in terms of the vi-
brational temperature T v as

Since little experimental data is available even for_ o_ the simplest case

of U being a function of T t can -be determined. This can be, done as follows.

Writing the expression for k d in the case for which vibration and transla-

tion are in equilibrium, namelY ,

_,. _ ¢-_/'k Tt. , (B63)

and comparing it with the expression for

namely,

determined experimentally,

where a and n are constants determined from experiment,

of T t is found as a solution of the equation obtained by equating
Eqs. (B63) and (B64), that is

cLT_'e e'/r_-- ¢ Zoi -D/'_ 0C 6t{r,)

_ _z,,e-a/ue,-_.J_

or 'e '_ _ c Zo

C-QJ

U as a function

__om

(B65)

As noted in Section 3. 3. i, C=l for _--_ _ .

In the simple harmonic oscillator approximation,
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-- (B66)

and

@ vU
4

(B67)

where _v is the characteristic temperature for vibration. Thus U is

obtained as a function of T t for the simple harmonic oscillator approxima-
tion as

c (,-
] ev/U- -- C Z_ _L 7- fl (]368)e

J

For example for the case of oxygen molecule-mo!ecu]e collisions

")'Z _-2,5

G( _0,o73X %43 ×/O'/_D _
(B69)

in the temperature range T t = 3700OKto 5000OK fromRef. 32 where the

dimensionsof@T_)is oolmolesec.

Eq. (B68) is a transcendantal equation and the evaluation of U as a function

of T t is quite complicated. The collision number Zo in Eq. (B68) is given

explicitly as (see Ref. 29) for like molecule-molecule collisions.

Zoz_, r,ri--,j _. -- R,_-&
(B70)

and for atom-molecule collisions

Zo ,z (6\, + ""--=-=
./'l/ll __

where _ Ok are collision radii for molecule-molecule and atom-
._ . 2.-

molecule colhslons, and j_,_,_ is the reduced mass of the atom and

molecule and is given by

_p _- , (B72)

_, _' _-7 2

where ml, m 2 are the masses of atom and molecule. For oxygen g)-p =

2. 96 x 10-8 _wl and _= 3. 54 xl0-8_(see Ref. 38).

Approximation for U

Consider the molecule-molecule collisions and substitute for
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Eq.
RHS in Eq. (B68), then

(B70) into Eq. (B68) and for ¢ < / , expand the numerator on

where

-- n_z _/, •= con:stant (B74)

Relative Efficiencies of Atoms and Molecules

In section 3. i. 2,

per cc Z d is given in Eq. (64) as x

an expression for the number of dissociations per sec

- E_'7
(_ (B75)

where 7. , the total number of collisions is

Z=Z o _]_ (B76)

where Z o is the collision number, i.e. the total number of collisions per

sec per cc per unit concentrations of reactants and lq_i , l_ are number

densities of reactants per cc. Z o for molecule-molecule and atom-mole-

cule collisions are given in Eqs. (B70) and (B71).

- Zd = _ can be written as
From Eqs. (B75), (B76), Zdo - _A_IB

2 j __ <E V_ T) "_ -E/_ T

-1_--n,,,----[Z_o- p.z, ._./ e
(B77)

= 2 and 1 for molecule-molecule andAs pointed out in Section 3. I. 2,
atome-molecule collisions respec_vely because of the differing number of

vibrational modes entering into the collisions and thus if -_d_is the rate

coefficient and _Ck the probability for atom-molecule collisions, then

for oxygen

- (o,,+o,_)#,,_,,_r (B79)
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from Eqs. (B70), (B71) where _, = 2.96 x10 -8 , _2 = 3.54 x10 -8 and

,_12. is given in Eq. (B72) and I ?l'}z= 2 P'_ =_D'71 , where m is the mass
of an oxygen atom. Thus

I,I
(B80)

Also from Byron's experimental results (Ref. 33)

(B81)

/'7#
II

where n=2 and _$=1.7, _q. =0.24. Thus

Zo,z 2,to_ _ o,e_tz

Equilibrium Constant K c

(B82)

l (B83)

The equilibrium constant K c is from Eq. (B25),

].,_C = "_" (B25)

where "_' _ *_ " " "
_-6tea_, _:/% are _,_ dlssoclatlona! and recombination rate con-

stants for vibrational and translational equilibrium. Also for thermal and

chemical equilibrium, from Eq. (60)

/ c_J_
Kc= c_-_7_j)_ _o_

where _A7 ,/A2_ in terms of_ are:

/n>7: fr,-_f¢'7,_ (B28)
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Thus
f_5/e_ //_O-_'_J

KC -_- v_U -_

_f__. _4 2
"-- }'_ct /--_e

(B84)

Also for vibrational and dissociational equilibrium,

_
l-- _'e

from Eq.

Hence

where f_ is given in Eq. (AI6).

(A34),

(A34)

(B85)

Relat'ion Between krj, _ and K c

A relation between the recombinational and dissociational rate constants
for vibrational level 'i under vibrational equilibrium can be obtained as

dfollow s : -

For vibrational and dissociational equilibrium, Eqs; ('BI'I}, (BI2),

give .

z Zhj-- Z z_ d

),

By the principle of detailed balancing one has

li

From Eq. (BI3)
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• (B8 6.)

(B87)

(B88)

(B89)
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-- ( U=cZo e e

(B90)

In section 3. 3. I,

to be of the form

Dissociation Rate with Internal Energy Taken into Account

Zdj the number of dissociations from level j is assumed

Zdj = c Z o Pj Nj N M (D-Ej)

where M(D-Ej) is the fractional number of collisions with a relative kinetic

energy greater than D-Ej along the line of centers. The expression for
this is taken as

M(D-Ej) = exp [-(D-Ej)/kT t ].

In section 3. i. 2, the over'all rate for vibration in.equilibrium with trans-

lation or Zdjsummed over all levels was shown to consist of an additional
factor (E*/k-T)S/s ! (Eq. (64)) if one wishes to take into account the

internal energies of the colliding partners as well.

Suppose that vibrational energy of all molecules taking part in a collision

can contribute to the energy of dissociation.

Consider "nonequilibrium" situation, i.e. -_t = "_v

(a) Dissociation rate, molecule-atom collisions:

This is, of course, the same as already evaluated:

Rate = __ -- Z cZ_ _ [_] E_j] _q £t)--E:_)
q

The internal energy of the molecule is taken into account in this formulation;

(b) Dissociation rate, molecule-molecule collisions:

Consider two colliding molecules, one with vibrational energy

E j, the other with energy E_

Total energy = Ej + E_
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Energy requtired for dissociation =D - (E. +,E_ )Probability hat translational energy of collision along line of
centres exceeds this amount, is 6- (D-Ej-E £ _Tt

==e-_z_. _,__Zo_<]_e_]e-_-_'-_)/_T_
, the symmetry number, =2 for collisions between like molecules

(e. g. 02 - 02 collisions), so that collisions are counted only once in the
summation.

_= 1 for collisions between unlike molecules.

Assume collisions between like molecules, i.e. o_ -- 2.

Consider the form of _)_,

_ =n=_o=yw._ _, _ could be put in the form "

k

- (D-Ej- E_ U

_ -_- _z.zz_
-- [&]_-- z _,

-CD-_ -e._)Au

SL__A],Og,l -(_-
LA-] F_T>]C

i

I

o

m • • e G?= CT_)
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But for molecule-atom collisions,

_IE--u)

• Ii v_= (v_ _
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APPENDIX C

Equations for Limiting Flows

It has been pointed out in Section 4.2.2 that the limiting cases of equili-

brium and frozen flows can be determined as the solution of a system of

algebraic equations. These equations will be derived in this appendix for

vibrational and dissociational equilibrium, called here equilibrium flow,

and for vibrational equilibrium and frozen dissociation, called here partially
frozen flow.

Equilibrium Flow

When vibration and dissociation are in equilibrium T t = T v and

c/e=0L¢_. The dependence of _ on local ? , T t is shown in Appendix
A to be

'/_a/e (cD

In addition, one has the mass, energy and state equations

J_/_ --- _C = constant. (C2)

¢ = _o : constant (C3)

and the momentum equation in differential form

temperature,

(C4)

(C5)

, _ , Tt, O_ , A, _ are the pressure, density, speed,

atom mass fraction, nozzle area and enthalpy respectively.
it has been ._no' wn-- -'--u,^ ....... _"" ^ *_* *_'_ _.+_.1.... _D oon 1_ _-¢ .-_=._pd in

terms of _ , T t , _aVl In equilibrium _V = _v(Tt ) and hence h is afunction of (_ and Tt, one. Thus once the reservoir conditions are known,

one can compute _o , thus completing Eq. (Ca). It has been shown in

Section 4.2.2 that the entropy remains constant and this condition can be

used to replace the differential momentum equation (C5).

This is achieved as follows:-

Write equations (CI), (C3), (C4J in differential form:

(C6)

(C7)
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: dP / dt' /aS u__dz_-
0 (C8)

On combining equations (C5) and (C8) one has

4 d,_.d,--_-_-_

Eliminating

obtains

--o (C9)

from equations (C6), (C7) and (C9), one

.+.T_ f×: d,. L _' f,5.>

From the expressions for h and x in terms of

evaluate the partial derivatives occurring in Eq.

-- -- _ T_ - e_<"/_- /

a ---- vz+..._+: ,-_u(C__ _

, : , T t one can

(C 10) as

-" (Cll)

(C12)

#.
c_

(C14)

Substitution of expressions (CI!)-(C15) in Eq. (CI0) gives

i--+:-_ - _ -':__ +,-_J:+d, -r; _ -

Dividing throughout by tt, this equation can be-put in a perfect, differential

form, namely w[_, _y-_<9
T_'-_- _ -i .(c17)

Integrating, one obtains

____+:,._<:T._ :_:_;A *_-_;c_ =:_<_,,:,Z,,,4(c18_d o-,</_,.._<'.ix;) _ -I

The integration constant may be evaluated at the reservoir condition _/_ ,

Tto. By comparing Eqo (C18) with the expression given for entropy in
Eq. (AI5) of AppendixA, it will be seen that Eqo (C18) simply expresses
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the fact that entropy is constant in an equilibrium flow.

Thus for the evaluation of _,_ , Tt, 54, _ in an equilibrium flow, one

can use Eqs. (C1) to (C4) and _q. (C18). To'complete the problem, one

still requires the knowledge of the equilibrium mass flow _e" This can
be determined as follows:-

The mass conservation equation in differential form is

dp (C19)

For the derivatives in the system ,_°f equations (C6), (C7), (C9), (C19)to
a nontrivial solution,_vhen _--- o ', the determinant of the coeffi-have

cients of these derivatives in the_eUAequations should be zero, i.e.

Or

° ° '4
f

=0 (C20)

Eqs. (CI), (C3), (C4), (C18), (C21)canbe solved for the critical values of

P , ]9 ,' Tt, 4, _/ at the geometrical throat from which the equilibrium

mass flow me ca_ be.calculated. Once the mass flow is determined Eqs.
(CI) to (C4) and Eq. (C18) are complete and can be used for finding the equili-

brium flow properties for a prescribed area variation in a nozzle.

l_artiaiiy frozen flow

In a partially frozen flow vibration is in equilibrium with translation giving
T t = T v and dissociation is frozen, that is d_ =0. Thus one has to

dX

determine only _ , #9 , T_, q In addition to the massi energy and
}. t °

state equat'ions IC2), (C3), (C4_one can derive another equation giving a

relation between f and T t by eliminating d_qq from (C7) and (C9).
d/_

For the partially frozen case, Eqs. (C7), (C9) simplify to

_ dT__r ÷__-- o

dZ-+ EZ_ J

(C22)

(C23)
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Elimination of dj from eqs. (B22), (B23) gives

d2C

- f c-w-- (C24)

Substituting for hTt from Eqo (C12) and integrating, one gets

ecr -ag- ,.,,,eL j

Here the integration constant can be evaluated at the reservoir conditions.

Eq. (C25) simply:expresses the fact that entropy is constant in a partially

frozen flow. Eqs. (CZ)-(C4)and (C25) can be used to evaluate frozen flow

properties. However tale mass conservation equation (C2) contains the

unknown the frozen mass flow "THe This can again be evaluated as in

the equilibrium ease by starting with Eqs. (C19), (C22) and (C23) and requir-

ing that, for dA- 0, these equations have a nontrivial solution for their de-gff-

rivatives, that is that the determinant of the coefficients of the derivatives

be zero, giving I

(C26)

(C27)
OF

Eqs. (C3), (C4), (C25), (C27) can be solved for the critical values of

, f , Tt, __ at the nozzle throat from which the frozen mass flow
_¢. can be evaIuatedo

Fully Frozen Flow

For frozen vibration and dissociation, the situation is exactly the same

as in the partially frozen case except that in the expression for kO_ given

in Eq. (C12), the second term on the right hand side drops out which is

nothing but the vibrational contribution. Also the third term on the left

hand side in Eq. (C25) does not appear because of the change in hTt.
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APPENDIX D

Computer Programme

The nonequilibrium flow equations derived in Appendix B were solved numer-

ically on an IBM 7090 digital computer at the Institute of Computer Science

of the University of Toronto. The computer programme was written in

Fortran II language. Since the calculations involved the integration of

coupled ordinary differentia1 equations for Tt, p<f and _v Or' _r_, a

fourth order Runge-Kutta method of integration was used. It was shown by

Emmanuel and Vincenti (Ref. 14) that for such a problem as this, the fourth

order Runge-Kutta method is quite adequate. As discussed in Section 5.3

the nonequilibrium calculations were started from initial equilibrium con-

ditions and contained a mechanism for progressive increase of integration

step size as suggested in Ref. 14.

The first step in the main programme was the evaluation of _ , A for

the given reservoir conditions _ ,: Tto by the equilibrium relation between
e_ , p , T and the state equationl. ° Then the equilibrium and the partially

frozen mass flows were evaluated, and the equilibrium and partially frozen

flow properties throughout the nozzle were calculated by use of the

equations derived in Appendix C. For nonequilibrium flow calculations

starting upstream of the geometrical throat, a nonequilibrim mass flow

between the equilibrium and partially frozen mass flows was chosen and

the calculations were repeated in an i(eration procedure until the true non-

equilibrium mass flow and the critical point were obtained. The calcula-

tions were then continued downstream by means of the jump conditions

applied to/_ , Tt, T¢ and O/ as discussed in Section 5. 3 to obtain super-

sonic flow,(that is frozen Mach number M#: ;_ i) in the divergent portion
of the nozzle. For the UTIAS Hypersonic shock tunnel calculations, the

further expansion of the flow past the deflection plate and a terminal wedge

nozzle were calculated under the assumption of fully frozen flow. In the

terminal wedge nozzle only the test section conditions were evaluated. The

frozen flow assumption in these later expansions was made since at the end
of the primary nozzle -_ • d_v

ff_r ana _ were of the order of 10 -3.

To these inviscid results in the test-section, boundary layer corrections

were applied using the formula for boundary layer displacement thickness

_"* given by Burke and Bird (Ref. 39) for turbulent flows.

These various steps are shdwn in the flow diagram given below.
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I

Equilibrium, partially

frozen mass flows and

flow properties through-
out the nozzle°

I
Starting upstream of throat find

nonequilibrium mass flow and

critical point.

Continue downstream for super-

sonic flow by discontinuous

changes in _ , Tt_ T v, , _ up
to the end of the primary nozzle.

I
Starting downstream of throat

Use equilibrium mass flow

calculate supersonic flow

up to the end of the primary
nozzle.

calculate flow through

deflection plate by frozen

Prandl-Meyer Expansion

I
Evaluate new mass flow

for the flow entering the

terminal wedge nozzle
and find test-section

conditions under frozen

flow assumption.

I
correct these inviscid

conditions for boundary

layer effects.

For the evaluation of the various steps in the main programme several

subprogrammes were written. They were:

SUMEJ: For the evaluation of Q(Tt), Q(Tv ), Q(T4_ ), Q(-U)and

_(_(Tt) , _(T_ ), _(-U). As indicated in Section 5.2, the
vibrational energy and the partition functions were evaluated

through a summation of exponentials to take into account slight

anhar monic ities.

FUN 3: For the evaluation of partially frozen flow prope tries through-

out the nozzle as a solution of Eqs. (C3), (C4), (C25), (C27) --

uses subprogramme FUNRO, FUNHT.

FUN 4: For the evaluation of partially frozen flow properties throughout
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FUN 5:

FUN 51:

FUN HT :

FUN 52:

FUN 53:

FUN 6:

FUNRO:

FUNRO2 :

SEAR CH:

E(QUILI:

INTE GR :

DERIV7 :

TEST 7 :

the nozzle 'as a solution of Eqs. (C2), (C3), (C4) and (C25) --

Uses subprogramme FUNRO.

For the evaluation of equilibrium mass flow as a solution of

Eq. s (C1), (C3), (C4), (C18) and (C21) -- Uses subprogrammes

FUN 51, FUN 52, FUN 53, FUN RO2 and library tape sub-
routine JCPM.

Equation (C21) -- Uses subprogramme FUNHT.

_Tt - Eq. (C12)

Equation (C18)

LHS Of Eq. (C18)

For the evaluation of equilibrium flow properties throughout

the nozzle as a solution of Eqs. (CI) to (C4) and (C18) --

Uses subprogrammes FUN 52, FUN 53, RUNRO2 and Library

Tape subroutine JCPM.

Eq. (C25) gives p as a function of _ and T t for partially
frozen flows. !

Eq. (C1) -- gives _ as a function of Gg-, T6
flow.

for equilibrium

For the solution of two unknowns Tt, c_ from algebraic -

transcendental equations (Cl), (C3), (C4), (C18), and (C21)or

(CI) to (C4) and (C18) -- Used for evaluation of equilibrium

mass flow, equilibrium flow properties in the nozzle and initial

conditions for starting nonequilibrium flow calculations.

For calculating p_i-_=_±_I--i_".....u_,, or equilibrium ....._nwproperties

throughout the nozzle.

For integration of the nonequilibrium flow equations, controls

integration step size, output printing interval, total number of

steps and total time used -- Uses subprogrammes DERIV, TEST,

END and Library Tape subroutines DEQ, DEQST.

For the evaluation of the derivativesd-_--_, _-_-_ , _- used

by DEQ and DEQST in the integration by fourth order Runge-
Kutta method.

For the evaluation of the critical nonequilibrium mass flow for

nonequilibrium calculations starting upstream of the throat and

for the prescription of jump conditions in )( , Tt, T v , _'
for calculations downstream of the critical point -- used only in
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END 7:

TEST 7 :

FUNPM:

FUNT :

FUNH:

FUNA:

SOLN:

UROPMS:

DERIV4:

TEST 4 ) .

END 4 )

DERIV6:

the calculations starting upstream of the throat.

a dummy subroutine.

(Dummy) a dummy subroutine for calculations starting down-
stream of the throat.

for calculation of flow past the deflection plate through a frozen

Prandtl-Meyer expansion.

for calculation of flow through the terminal wedge nozzle under

frozen flow assumption.

for the evaluation of enthalpy.

for the nozzle area ratio variations.

for calculating the boundary layer effect on the inviscid condi-

tions by iteration.

for evaluation of the various flow properties under frozen and

equilibrium assumptions.

for the calculation_ ,A°fpartially frozen flows through integration

of d_/_q, = _-_ -- uses subprogrammes FUNDT,

FUNA, FUNH.(f-_ )'_T_

dummy subroutines for frozen calculations by integration.

for the calculation of equilibrium flows through integration of

_].+ __ _L___ _ -- uses subprogrammes FUNDT, FUNA,

--
FUNH.

TEST 6 ) . dummy subroutines for equilibrium calculations by integration.

END 6 )

FUN DT : calculates for partially frozen and equilibrium

flows with the corresponding _y_ and M 2, i.e. M 2 and
M ¢2 respectively.

]

The various Fortran names occurring in each of these subprogramme and

their expression in non-dimensional form are given in the following pages.

Non-Dimensionalisation

For the calculations on the computer, all the flow variables and rate constants
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were non-dimensionalised as follows:-

pressure, translational temperature, density,

atomic mass fraction in the reservoir (dimensional)

recombination rate constant, vibrational relaxation

time, equilibrium constant at reservoir conditions.

(dimensional)

throat area.

All quantities with dimensions of temperature are non-dimensionalised by

Tto namely, (primed quantities are dimensional).

- r. ,_ _, ,u=r_o ,T_=_r._- _ -_ -_-_--- -- ¢--Zj.#--_E"_- _o (o__

pressure

density

e nthalpy

speeds

_f_i

area A = A /A*

-

(D3)

(D4)

(D5)

(D6)

Rates are non'dimensionalised by their reservoir values, namely

dl
:_M_R= _= -_ ----T/" _p _ (-_r_-') (D7)

where

,<_ K__ crj(/- e -_) e - _

(D8)

(D9)

(D10)

(Dll)

(D12)

To vary
such that

% from its normal shock value, a parameter 3)_'- is introduced

(DII i)
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With this non-dimensionalisation, the equations transform as follows:

Equilibrium flow :-

The equilibrium relation between O<f , f

o4,-_ Z - 1

- _ e-_'_ -_

• T t becomes

(D13)

from which f may be written as a function of _/e •

e ,0 o,..
which for the reservoir conditions

becomes I= _ ' ',_'i -_' _-_ t_/=_' "
_e_ t

Dividing Eq. (D14) by EI. (D15), we obtain

In the computer programme the numerator is named as FUNRO2 (TT, ALPHA)

with TT and ALPHA as arguments such that the denominator becomes

FROo= FUNRO2 (I., ALPHAO) and the density is given as

T t in equilibrium as

(D14)

K--fo.Tt=cf =/
(D15)

=RO=FUNRO2/FHOo

-i -_.-_¢
where FUNROI (TT. ALPHA):_7_) >-e _ _-'_/_=

(DI7)

(D18)

energy and state equations (C2)• (C3), (C4) become,

(DI9)

".<

Eq. (C18) which gives the relation between _',
become s,

(D20)

(D21)

Tt in equilibrium

-,,-,,',.,._'.,_ v,_. _ Co_A,,,,_<
T, '4_-_)_*/4 "-/ (D22)

Evaluating the constant at reservoir condition.
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2 O-<_)LI-C- _')
-/- c/-_J 4, +._-o<) <,'r

d'-/

Substituting Eq. (D23) for the constant in Eqo (D22),

(D23)

(D24)

Cancelling the Tto term under the logarithmic on either side, this is
written as

FUN 53 (TT, ALPHA) = FUN 53 (I., ALPHAo) = Fo (D25)

with TT and ALPHA as arguments of the function FUN 53 where

53(TT,ALPHA)--
and Eq. (D24) denoted by FUN 52 (TT, ALPHA.) is simply

(D26)

FUN 52 (TT, ALPHA) = FUN 52 (TT, ALPHA) - Fo (D27)

Similarly, Eq. (C21) for the determination of equilibrium mass
flow is

-_6 I -- o
From (CII) and (C15), it will be seen that _ and X_ have dimen-
sions of temperature while from Eqs. (C12)-(C14), it will be seen that

R • X_ J pAzp are dimensionless. Thus the brackets in the

first and last term in Eq. (D28) are dimensionless and the bracket in the

second term has dimensions of temperature, and one finds

Here the quantities __.,.k_f , _ , .)<I _ _ , _

are
(D29) throughout by RZTto one finds

he --

are given in Eqs.

DiViding Eq.

O
(D30)

which is in dimensionless form. Also _a = _';/_ Tt_. This expression

is denoted by the function FUN51 (TT, ALPHA) and the various quantities

are given the following Fortran names,

XALPHA = X_

XT = XTt

ROXRO = _'_,d
HALPHA = f_/
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HT

CAPZ "

= /_/_ = FUNHT (ALPHA.)

= q2

The other

Partially

variables in Eqs.

RO

U

AC or AREA

H

HO

P

ALFP i

ALFMI

ALFoP 1

ALPHEL

y(17 or TT = T t

y(2) or TV : T v

y(3) or ALPHA =

CURLMC =

THETAV : @¢

THETAD : _=

THETAR = _r

ToD = Tto

PoD = Po

ROoD = ]9o-

frozen flow :-

(DI9)-(D21) are denoted in Fortran by

f
= b
= A

= h = FUNH (TT, ALPHA)

= h o = FUNH (1., ALPHAo)

= p
= l+P(

= 1-SX

= I+Yo

= O_/_ (local equilibrium _ )

(mass flow)

= THETDD/ToD = 0_/_ °

(dimensions in °K)

(dimensions in dynes /cm 2)

(dimensions _/cm 3 )

For the partially frozen case, the mass, energy, state equations

(DI9) to (D21) are the same. The p , T t relation given in Eq. (C25) is,
after evaluation of the constant from the reservoir conditions,

aa÷_) /+_ /_ eg&'_l

/: -at. l
For partially frozen flow from the reservoir, the _ on the left hand side

c,_'o , so that the above equation can be rearrangedin Eq. (D31) i.e. also

as

f' 5,,_', £. _:"
2,fro _wE /_--_.[ e_ w

/_° -4O.o)-&_ _ (,,o]

k%/- eg o
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The right hand side of Eq. (D32) is denoted by RO=FUNRO (TT, ALPHA{})

in Fortran and is used to evaluate ? for partially frozen flows.

For the evaluation of the partially frozen mass flow, Eq. (C27)
is J9

• _ -'O

Note that ff_ is dimensionless and we have replaced _.._ _"_A_,_
P

and T t by T.e "_o . The left hand side of Eq. (D33) is denoted in

Fortran by FUN3 (TT, ALPHAo) with TT, .ALPHA0 as arguments.

s

Nonequilibrium flow:-

In nonequilibrium flow also, the mass, energy, state equations

have the same non-dimensional form given in Eqs. (D19)-(D2 1). The

coupled ordinary differential equations for Tt, _¢ _r Y_ , ad given
in Eqs. (103), (98), (97) are non-dimensionalised as follows:

Dissociational rate equation

The dissociational rate equation is

._ and V are already dimensionless and "_0/ is given by

(D34)

(D35)

where _ is a characteristic length and

since Y/_ /_ -- _'_- Thus

(D36},.

(D37)

-(D38)

(D39)
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or

where

and

DALDX -

ZETA =

PSI =

__ Y_/.Evl__)

L = _J.K<.. I-_
I-oZ. p c__

Qc77,J m6_,J
v = _677) _(-uj

(D40)

(D41)

(D42)

(D43)

(D44)

where Q's are given by Eq. (B21)

that

From Eqs. (D9) for Be and (D18) for FROo, one may note

o<',.K° ,__,_ _,,=.L_,,_-e 'k_c ¢ /-_
]>-_..

(D45)

Note that Q (Tt) is nothing but the vibrational partition function obtained by

replacing T V by T t and is equal to (l-e-_r/li7 ). In Eq. (D40) V and

L occur as a product° It was found in the calculations that for T t _ 0.4,

V reaches the capacity of the computer i.e. V > 1038 and Kcl reaches

the other extreme, i.eo Kcl _ 10 -38 . Thus the product VL was calculated

by different methods for T t _ 0.4, namely

where

(1) for "_ _o, 4

C,#PL=P/t� "F"_t e- _4 (/-_j,._,.- (040)

PH1 = l/FROo (047)

and CAPV = Q(T_ )/Q (T v ) Q(-U) (D48)

(II) for __Tt __. 0.4,
(D49)

CAPL : PHI "." _t (1-¢)/ /_ 2

CAW: e-_ ._crfJ/_ c_.._p(-/-J.J (050)

The _k occurring in Eq. (D42) which takes into account the

relative efficiencies of atoms and molecules in causing dissociation is

given the Fortran name FLABDA and its value given by Eq. (B83) is
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FLABDA :/"k = 35. T t (D51)
0.

Vibrational relaxation equation:-

The vibrational relaxation equation is

_" - f_,r,' f'_',-_J f'<',-_v
, _v , _=/ have dimensions ofThe various energy terms _'_ " - , _/

RTt o • i _ #'_'l,t lengthwhlle _J_" and ha-+_dimensions of and L" is dimen-
sionless. Thus dividing the above equation throughout l_y _/_T_ to
make it non-dimensional_ one obtains

- -]- (D53)

In conformity with the dissociational rate equation

, "I_Q/'/"-- Y_ L"= L (D54)

and

where _._ is evaluated at reservoir conditions° Taking 5
factor, one has

a £ _ Y _:-z. y,vL_E--_,,,_1_%{,-_s{
DEP DX = _-- _ _ _ (I--_) ,.

u _j

where ETA = _ = ._/_%ff/'_--<

Eq. (D56) is used in the calculations.

(D55)

as a common

(D56)

(D57)

As was already indicated in section 5.2, the vibrational energy

and partition function were caicuia_.ed by summing over the various energy

levels° The quantities E.. G, _, Q(Tt), Q(T{ ) and Q (-U) were also
calculated in this manner°

We have

and

where E _
c on st ant,

/

----" (D58)

(D59)

is the energy with dimensions in er'gs and k is the Boltzmanp
m is the mass of the atom in gin. EJ can be expressed in

dimensions _-_-_ _ as , ,_

Ej' = _A E_/' .. (D60)

where E]¢ whose Fortran name is EJPP is given in Eq° (114) and has

dimensions°_ Cz_-lo Here c is the speed of light and hPlanck's constant.

In the computer programme_ E ,¢. .I _ was replaced_ by _. such that

o,;,=% -
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Non-dimensionalising by Tto one has

THETVJ = _= .... • = _ _" -- E_C TO_ _JPP

which is denoted in Fortran by THETVJ. With j=l, one recovers @v

which is the non-dimensionalised characteristic vibrational temperature..

THETAV=0 v = Or, = = • -_

By this non-dimensionalisation, one has

ev# _ e_)z_;/_ tr_) = g PJ TY
Z%.e- (D64)/-

and
= ark,

(D62)

(D63)

(D65)

Similarly Z_: _ I3%,e-@v]/r_,_c_; = EPE T T

ql_-'-Z e-_'/7_ = Q T T

_;= Z e-e,_' = _ rF

(D66)

(D67)

(D68)

(D69)

"(D70)

.

The quantity /.] which occurs in the efficiency factor Pj is also non-dimen-

sionalised by Tto, that is

U = {M_'_ o

Since only two values of U are used, namely U=

reciprocal of U is written as

(D72)

and U= _ /6 the

CAPUR = CAPU = UFACT/THETAD (D73)

Where UFACT is zero or six depending on whether nonpreferential or

preferential model is used. This inverse value 1/U is used since it always

occurs in the equations in that form.

The second term on the right hand side of Eq. (D56) is slightly

changed for T t < 0.4 because of the change in CAPL and CAPV indicated

in Eqs. (D49), (D50), by redefining E and Q(T_ ) given in Eqs. (D67) and
(D70) as follows:

EBAR = F, =7_ _' _-_//¢'/_" ._-_/'_e-- (D74)
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and 7b_. _ _ o,4: (D75)QTF= Q(T_) = _ _-O_/_ _-DI0'/_

The second term in Eq. (D56) is rewritten as

L,- _-) - t_,-_.J .._b_J

Also, Eq. (D56) is written for the vibrational temperature,

instead of vibrational energy in the form

DTVRDX = 6/C2"]_J - DEPDX/DEDTC (D77)

where DEPDX is given in Eq. (D56) and the Fortran name DEDTC means

d_v
DEDTC = d(///7_J (D78)

This occurs since _v is a function of _ . The quantity DEDTC in

Eq. (D77) was also calculated in the subroutine SUMEJ along with _0, ,

6_ (Tv ). The variable TVREC = liT v is used since it always occurs

in the equations in that form. So, also, since T_ is calculated from

-- ---/-- - / / (D79)

the variable TFREC = 1/T_

Equation for Tt:_L_-

The differential equation for T(

_Tf'

is used in all calculations.

as given in Eq. (103) is

_ °7,-
which is non-dimensional form is simply,

D-r_A,--d___-- _. ?/ d_ / d._ ' / __Z_/ _'_- d_6,._ _' _D81)

.z "are given by Eqs. (D40) and (D56) and_where

is calculated in subprogramme FUNA and is given the Fortran name DABYA

/
DABYA (D82)

The derivatives _- , _ and _/_)are_ also denoted by
YPRIME (1, 2, 3) respectively.

All these equations are writte_ in subprogramme DERIV7, which

also evaluated the following further quantities.
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Local Equilibriur_ :-

In all nonequilibrium calculations, the evaluation of the atom

mass fraction in equilibrium with the local pressure or density and temper-

ature is of interest to give a measure of the nonequilibrium. The _ so

calculated could be different depending on whether one uses J2) Tt or

Tt for its computation; this was pointed out by Clarke (Ref. 41), In the_e

calculations the _ is based on _ T t and is given by the equation

which was obtained by replacing p from EI. (DI6) by the state equation.

The expression for FROo as given"m Eq. (DI8) is

FROo = Q(T t = 1o0) _':-'_ _z_t # (/- 2 , (D84)

where _/p is the value in the reservoir and p, Tt are local values.

Relaxation lengths :-

Vibrational and dissociational relaxation lengths were also

computed for studying the effect of the dissociation models on these° They
are defined as

Vibrational

VE L = 2.. ,/
which takes into account the effect of dissociation and recombination;

ve z-,= 2
which does not take into account the dissociation and recombination.

Dissociational

which takes into account the vibrational nonequilibrium and

which does not take this into account.

(D85)

(D86)

(DSq)

(D88)

Rate constants and coupling factor:-

/ /
Also, the rate constants _/_,, )_d__

/ I

ratio V ='_d_a_/_._ were calculated, their
U
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SMKDEQ --- /_C_ " _/_

SMKDNQ =

Calculations for flow past the deflection plate:

(D89)

(D90)

(D91)

(D92)

The flow past the deflection.plate is calculated for frozen flow

through the Prandtl-Meyer fan by the equation,

where 0 is the flow deflection angle, Mf is frozen Mach number, and

__ 7 t . (D94)

where C_ is the value upstream of ..the deflection plate: that .is at the end

of the primary nozzle. The constant'in Eq. -(D93) is evaluated" at the same

point. Eq. (D93) is written in subprogramme. FUNPM. Once the Much

number behind the Prandtl-Meyer fan is evaluated from Eq. (D93) the other

flow variables It. J)) _j _ are calculated from isentropic relations in

which _ is used for the isentropic index. •

The Fortran names for these various quantities are:

CME1 = Mf (behind P.M. fan)

CME_ Z = P. fan)

GF= /_ M; (before M.

behind the P.M. fan, i.e.

=1"

TE 1 = /_el
ROEi = /aj_-

PE 1 = _ep

UEI = get

Test Section Conditions

(D95)

(D96)

(D97)

were given the subscripts E 1 for their values

(D98)

Inviscid Results :-

The conditions in the test section were calculated starting from

T_, , }_$, , JP_I , _! under the frozen flow assumption, thus using the
isentropic formulae. A new mass flow'for the gas entering the terminal

nozzle is evaluated with J_e.¢, _;_t and /_6! the entrance cross-section

and is given the Fortran name CURLMI, namely

CURLM! = _1 ",_e4 "_Z_e., (D99)
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The energy equation was slightly modified by removing the vibra-

tional and dissociational terms from the enthalpy expression and writing

-- A,-

where HCI is the Fortran name for hclo The evaluation of Tt in test section

denoted by TE3 is done by the use of Eqs° (D99), (DI00) and state equation

and the isentropic relation between Te3 and Tel. This is written in sub-

programme FUNTo

Boundary layer corrections:-

From these inviscid results and the formula for _'*, the

boundary layer displacement thickness given in Eqo (108) 6-* was calculated

and a new area was evaluated taking the boundary layer into account and the

evaluation of Te 3 was repeated until the difference between two successive

values of Te 3 and that of_* was less than 10 -5 . The Fortran names occuring

in these calculations are

TR = Reference temperature (DI01)

REYR = Reference Reynolds number (DI02)

DELSTR = _ .-',.- (D103)
TMC = test section frozen Mach number (D104)

The test section values of Tt,

TE 3 = Tt )

ROE3 = f )

PE3 = _ )

UE3 = _ )

f ' r ' _-_ are given subscript e3, i.e.

in test section

Details of integration procedure in the primary nozzle:-

(Di05)

SUBROUTINE TEST 7 •

As was already discussed in some detail in section 5. 3, for all

calculations starting upstream of the geometrical throat, one has to evaluate

the nonequilibrium mass flow and also jump through the critical point. This

is accomplished by subprogramme TEST 7. The differential equation for

T t is

= _9/2- _5-O/V'] (DI07)

where DIFF = / --/_"/._._ (DI08)

and SUM = numerator in brackets /( 7+3_( ) (D109)
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For an expansion from the reservoir T t decreases and thus _-r ] is

negative. But until Mf= i, DIFF is positive, thus SUM is negative initially.

For the flow to expand beyond Mf= i, dTt should still remain negative, but

for Mf > i, DIFF is negative and thus SUM should be positive. In other

words DIFF changes from positive to negative in passing through Mf_l and

SUM from negative to positive. Both these changes should happen for the

same _ which is called the critical point. However, if SUM becomes

positive before Mf reaches unity, one obtains subsonic flow which is not of

interest. If DIFF becomes negative before SUM becomes positive, the cal-

culations oscillate. When SUM becomes positive first, the mass flow is

increased by changing the value of FACMNE as indicated in Section 5. 3. In

the opposite case FACMNE is decreased until finally the values of FACMNE

for subsonic and oscillatory results differ in their last significant figure used

in calculations, which here is the eighth figure. In this final stage, the "

values of _ , Tt, T v , _ are increased by a small amount at the point
where SUM reaches its maximum. All these are written in subprogramme

TEST 7 and the various Fortran names are:

FACMNE

FUP

FDOWN

XRE
XADD

DY(I, 2, 3)

SUMOLD

EPSILI

KAP

Upper Facmne
= Lower limit orl Facmne

Restarting _ if Facmne is modified

Amount by which _is jumped at critical point

Amount by which Tt, ¢4, T V are jumped at
critical points.

= value of SUM in previous step to find where
SUM reaches maximum.

= the amount by which SUM differs from zero,

at the time of jumps.

= 1,2,3 indicating if DIFF is -Y_ , 0, or +_

re spectively.

= number of iterations of changing Facmne.
5

NOVER

SUBROUTINE INTEGR :

As was indicated at the beginning of this appendix, the computer

programme contained a mechanism for progressive increase of integration

step size as the integration proceeded downstream. This was contained in

subprogramme INTEGR. This was achieved as follows:-

First the integration was carried out with a step size H=HX

where HX is input value and then the same calculations were repeated in

two half steps, i.e. HALF=H/2. These integrations were carried out by

library tape subroutine DEQ which is based on a fourth order Runge-Kutta

method. If the difference for Tt, T v , y between these two computations

was greater than a given amount R2, the step size is decreased by a factor

R4, i.e. a new H is taken such that H=H*R4. If the number of times of this

consecutive reductions in step size is greater than IR6, the calculations were

stopped. This happens in one of two cases: (I) if the flow is extremely close
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to equilibrium or (2) if the critical point is reached. In case (i), the non-
equilibrium calculations are started further downstream and in the later
ease the calculations are either started with a new facmne or the jump con-
ditions are applied°

If the difference between the full and half-step calculations was
less than a value RI_ for iR5 consecutive steps, the step size was increased
by a factor R3, i.e° H=H*R3.

This subroutine also controls the interval of printing results and

stops the calculations when more than a certain time T!MEUP was used or if

the total number of steps KSTEP is greater than a given number of steps

NSTEPS or ifi reaches its final value XL!MITo

are:

Some of the other Fortran names which occur in this subroutine

NDEGR

NSTEPR

KWRITE

KINCR

XCURR

HTABLE

KTABLE

= The number of differential equations to be

integrated°

= Interval of printing.

= The number of the integration step for which

results are printed.

--: The number of times, the difference between

the full and half step calculations is within

tolerance R I.

= The current value of

= Integration step size at step number KTABLE.

= KSTEP.

SUBROUTINE SEARCH:

This subroutine is used in tb.ebeginning of the main programme,

to solve algebraic.-transcendental equations for the de+ermination of frozen

and equilibrium mass flows and flow properties in the whole nozzle and also

to find the initial conditions for starting nonequilibrium calcu]ationso This

is done by first taking a value of T=ToP and finding the values of E>< which

satisfy throat conditions Eqo (D30) ALPHI and the constant entropy condition

Eq. (D24}; ALPH2 and their difference is denoted by FUN 5. If either of

these is not found ToP.--XRIGHT is decreased by a factor FACT and tried

again° If this happens a number of times END_ the calculations are stopped.

Similarly a new value of T was taken by decreasing it by an amount DX,

i.e, XLEFT=ToP-DX and again ALPHi and ALPH2 were found and again

their difference found and compared with the earlier value. If they are of

the same sign XLEFT is further decreased by DX until they are of different

signs° Tkis gives two limits (T 1, C_/I ), (T 2, c>L2) at which the FUN5 is of

opposite signs from which the correct root (T, _)was found by using Library

tape subroutine JCP=JCPM.

For the initial conditions and equilibrium and frozen flow pro-

perties in the nozzle, the equations used are entropy and mass conservation
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equation (D24) and (D19).

Other Fortran variables:

XINTGR

KBOLTZ

HPLANK

SMMA

SMM

THETRD

THETDD

PI

IN

IOUT

R

T0D

PATM

Pod

Go 1, Go2

XSTART

CAPMF2

= 1.0 according as integration is required or not
= Boltzmann constant

= Planck constant

= Mass of atoms per unit mole
= Mass of an atom

= _g_' _d in dimensions of temperature OK.

= 77"
= Input tape

= Output tape
= Gas constant referred to diatomic molecule

= Reservoir temperature in OK

= Reservoir pressure in arm.

= Reservoir pressure in dynes/cm 2

= gol, go2 statistical weight of ground energy

level for atoms and molecules respectively

= The starting value of % for integration

The equilibrium, frozen and noneq(zilibrium and current values

etc. are distinguished by subscrips e, f, ne, c, e.g.

TE = T equilibrium

TNE = T nonequilibrium
TC = T current

except in the sections containing the calculations for flow past deflection plate

and test section, this is not adhered to, they being distinguished by subscripts

el, e3 as noted earlier.

SML

DO, D1, D2

B0, B1, B2

W1, W2, W3

ALPHA 1 )

ALPHA2 )

TF1, TF2

TF I 1, TF I2

A(1) .-A(2.6)

E(1)-E(F)

= Nozzle characteristic length

= Constards in the : expression for recombination

rate constant k r Eq. (DI0)

= Constants in the expression for vibrational re-

time _V Eq. (DII)laxation

= Constans in the expression for vibrational

energy Ej /

= Limits on (_ for solving algebraic-transcen-

dental equations (D24), (D30)

= Limits on T for frozen mass flow evaluation

= Limits on T for frozen flow calculations

= Coefficients in the polynomial fits for Area
= Limits on _f where different fits are made for

Area
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Order of input data:

The input data was always supplied through a F Format, except

for eard (9) below where an I Format is used.

The order in which they are transmitted is for each data card:-

(1)

(2)

(3)
(4)

(5)

(6)

(7)
(8)

(9)

(IO)

(ii)
(12)

(13)

(14)
(15)

(16)

(17)

(18)

G01, G02, SMMA, HPLANK, BOLTZK, THETRD, THETDD

TOD, PATM

WI, W2, W3

TFI, TF2

ALPHA1, ALPHA2, TOP, FACT, END, DX

ALPHA1, ALPHA2, TOP, FACT, END, DX_XSTART, XINTGR

HX, XLIMIT

RI, R2, R3, R4, XINTER, TIMEUP

IR5, IR6, NSTEPR, NSTEPS, KLOCK, NTYPE

DO, DI, D2, B0, B i, B2, UFACT, SML

FUP, FDOWN, XRE, XADD, EPSIL, EPSILI

A(1), A(2), A(3), A(4), A(5), A(6), A(7), A(8)

A(9), A(10), A(II), A(12), A(13), A(14), A(15), A(16)

A(17), A(18), A(19), A(20), A(21), A(22), A(23), A(24)

A(25), A(26), E(1), E(2), E(3), E(4), E(5), E(6)

E(7)

DTAU

DY(1), DY(2), DY(3)

0

Transmission of output data:

The output is always printed in E Format. They are printed in

general eight quantities per line and the order is:

(1)

(2)

(3)

(4)

G01, G02, SMMA, HPLANK, BOLTZK, THETRD, THETDD, T0D

PATM, PI, R, SMM, To, PoD, THETAR, THETAD

EPST0, QTo, ATo, ALPHAo, ALFoPI, ALFoMI, ROod, Ho

Fo, FROo, THETAV

When frozen mass flow is calculated the next output data is

(5)
(6)

TF, UF, ROF, PF, CURLMF, CURLMC, A C, AFI

CAPMFI, AF2, CAPMF2, AE, CAPME

which are throat values for frozen flow.

When frozen flow properties in the nozzle are calculated, they
are printed as:

(7) X, AC, ROC, P, TAUV, TAUD, TC, ALPHAC, UC, AF2,

CAPMF2, AFI, CAPMFI, AE, CAPME
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in one single line for any given

Then the equilibrium throat properties are printed as:

(8) FACT, END, DX, XSTART, TE, ALPHAE, UE, ROE

(9) PE, CURLME, AFI, CAPMFI, AF2, CAPMF2, AE, CAPME

If equilibrium flow properties are calculated, they are printed

as in line (7) above. Then the initial conditions for starting nonequilibrium

calculations are printed as:

PE, CURLME, ALPHEI, UEI, ROEI, PEI, FACMNE. ALPHNE, UNE,

RONE, THETAV, EPSC, DEDTC, XTPART. HALPHA, ALPHAC, UC,

ROC, CAPMF2, TNE, CAPMF2, CURLMC

The results of the integration of the differential equations are started on a

new page with the'he_ding.

INTEGRATION STARTING

and the first line gives

XCURR, TT, ALPHA, TVREC, H, FACMNE

The second and third lines give

SMKR0 D, ZETA, TAUOD, PHI, ETA, DENOM2, DENOM, -CONST, CONST2,

GBAR, QTU.

The results of integration for each 25 or 50 steps are then printed in six

lines as,

STEPS, :X, TT, ALPHA, TVREC, DTDX, DALD:X, DTVRD:X.

TV, TFREC, U, EPSTT, EPSTV, _^'_ ,-_t_a_ _

QTV, ,QTF, QTU, CAPV, CAPZ, RO, CAPKC, CAPL.

SMKR, PSI, TAUV, PART i, PART 2, PART 3, PART 4, PART 5.

PART 6, CAPMF2, AREA, P, ALPHEL, DRL, DRLI, VTRL.

VERL, VERLI, SMKRI, SMKDEQ, SMKDNQ, COFAC, DELSTR.

The end of these integration results is indieafed by

END OF RUN

and the last results are printed as above.

The next line of results printed on a new page give the results

of calculations past the deflection plate and in the test section,

The first line give the values in front of the deflection plate as:
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TC, UC, PC, ROC, CAPMF2, CME2, ALPHAC.

In the next two lines are printed the results past the deflection
plate as :

CMEI, TEl, AF, UE_. ROE1, PEI, ACI, CURLMI

HCI

The next line gives the inviscid test section conditions as:

TE3, ROE3, PE3, AE3, TMC, DELSTR, AC2

and the successive lines give the same results with boundary layer correc-

tions applied, the last line giving the final corrected values.

In the case of calculations starting upstream of the throat, when-

ever FACMNE is changed or the jumps are used, the following data is trans-

mitted at the position of END OF RUN. The line starts with:

RESTART FACMNE = (the new value) DIFF, SUM, SUMOLD

in the first case and in the later case,

XCURR INCREMENTED XCURR, TT, ALPHA, TVR (all new), SUM,

SUMOLD.

The Fortran names of the variables of interest from the point

of view of results are already given in the earlier pages. Some names like

PART I, etc. are not needed for results, but to know, if something goes

wrong, what has gone wrong. For example, if any of the calculations of

frozen or equilibrium mass flow or starting values or flow past deflection

plate or in the test section could not be done due to the inadequacy of the

limits, they are indicated by the diagnostic,

REVISE TF LIMITS (frozen mass flow)

ERROR IN SEARCH EXIT = (no.) (Equilibrium mass flow)

REVISE CME LIMITS (flow past deflection plate)

REVISE TE LIMITS (Test section conditions)

the number in equilibrium mass flow calculations indicating where the trouble

arose. This may be understood by looking into subroutine SEARCH.

The flow diagrams in terms of Fortran names and subroutines,

and the listing of the whole programme, are given in the following pages.
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MAIN PICOGRAMME

Start

l
I d-'i::°_::.:.ot.]

l
section 2

introduce dimensionless quantities

aleulate _, Po, f-vo' ho, FO,
• F_o0

1
i ,i°,,....':_';_.t_o°,,,lon.1

_,,ooeqoii:::i:_.o.tl. :i.o I "L__
o:._i:o..F

I equilibrium yes

yes I I I

I !_o_"'"_:_'_j
,J w past deflection plate [

[ FUNPM _

, J
test section conditionsSOLN. I

FLOw CHART D1



Subroutine INTEGH.

from sections 4, 6.7 of Main Proqrarnme

1
cad DEQST

for new T t , T v,
at a new x with H

1

call DEQS
* for new T t, T ,

J at a new x with It/2

I
call DEQ 1

continue InteqratiLm

l for Sx= H/2 [ [

I
_- ve

I record step- e$ no

size change xceede

yI

_' ' -- I { call TESTT(2) I step rest",

FLOW CHART D2



subroutine DERIV7

from INTEGR

calculat ite I.... _ ye.

output kro , $ . _ entering

_o. _' ,'t. _, I _ for th_first
Q(-U),readD_ [

for _, Q(Tf) :

I Icall SUMEJ

for _0 Q(Tf)

!

calculate CAPV, u,.P , j- p, M_

properI
[ CAPL _ _ v_.,p

set YPRIME(Io 2.3)- l
dTt/dx , d_/dx, d(1/Tv)/dx r_

re, -re VERLI l

_x, T t

m

I
I

' li/Tv and derivatives" [

i

I i proper_°.q II
I ,indco,_"n.,actorI

1
remaining variables

]
return toINTEGR )

FLOW CHART D3



subroutine TEST7

from INTEGR

_ re'°iip°'°"

I,',

1,2 ,,

return to

FLOW CHART



APPENDIX E

SOME COMMENTS ON THE PROBLEM OF

COUPLED VIBRATIONAL AND DISSOCIATIONAL

EQUILIBRIUM

By: J.E. Dove*

* Department of Chemistry,

University of Toronto, Toronto 5, Ontario, Canada.
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I) Excited Electronic States of the Oxygen Atom

The problem of the various excited electronic states of the oxygen atom and
molecule is referred to rather briefly on this page. If one is concerned mainly

with calculating the equilibrium properties of oxygen to a somewhat moderate

degree of accuracy, then it is certainly quite true that the electronic parti-

tion functions of the oxygen molecule and atom can be treated as constant

over the range 1500°K to 8000°K. Incide_Aally, over this temperature range,

the atomic partition function actually varies from 8. 38 to 9. 16 and the mole-

cular one from 3.00 to 3o 68 so that the values given in the report, 8.8 and

3o 3, are the averages of an appreciable spread of values.

There is, however, an additional point, which is illustrated in Fig. 13

which is taken from Refo 44° The electronically excited molecular states

have, of course, their own sets of vibrational levels. The vibrational levels

of the ground state oxygen molecule are overlapped by those of the iAg

excited state above v = 5 and also by those of the 1 iF_ state above v=9. At

energies close to the dissociation energy, the levels of the 3 _+u state also

come into consideration. The degeneracy of the ground electronic state is

3, while the degeneracies of the three excited electronic states mentioned

above are 2, 1 and 3 respectively. The point of these remarks is that at

equilibrium tbe electronically exicted states will be populated, as well as

the ground state, and - other things being equal - the ratio of the populations

of states at a given energy will be the ratio of the electronic degeneracies.

In effect, additional states are available at fairly high internal energies

(electronic plus vibrational energy), and this increases the proportion of

high energy molecular states which will be present at equilibrium. This has,

of course, some influence on the thermal properties of the gas, though as

already mentioned the effects are not extemelylarge. However, if, as seems

likely, the higher energy states are of considerable importance in determining

the rates of recombination and dissociation reactions, the effects on the

kinetics could be considerable. The extent of any possible effect in an

actual reaction kinetic problem will depend on whether the electronic states

actually are populated under the particular experimental conditions and on

the rates of population and depopulation. These rates have been studied in

only a few cases, and the results, as you will know, indicate that transla-

tional-electronic energy transfer is rather slow, but that vibrational-elec-

tronic transfer is quite efficient. In such a case, the degree of electronic

excitation would tend to be close to that of vibration. (However, the evidence

so far is mostly concerned with the electronic excitation of metal atoms,

and it is not completely certain that this can be applied directly to the e_lec-

tronic states of molecules° ) This problem of the effect and possible partici-

pation of molecular electronic states seems to have received almost no

attention in the literature, and I know of no direct experimental evidence of

any effect on the kinetics. However, such evidence would be quite difficult

to obtain at present.
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_>000

2o_ooo

0

FIG. 13 Potential Curves of the Observed States of the 0 2 Molecule. A

number of states lying above i00,000 cm -I (Price and Collins (571)) are

not drawn, since sufficiently accurate data are not available for them. The

3_. + state has actually three more vibrational levels below the lowest

oneUshown (see Herzberg (1044)). Taken from Reference 44, Fig. 195.
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2) Formulation of Dissociation Rates

The formulation of dissociation rates which is given here is applicable to

the dissociation of relatively complex molecules, but not generally of dia-

tomic molecules. The point is that for a molecule which has a number of

different modes of vibration, it can often happen that it receives sufficient

internal energy to dissociate it and yet lives for many vibrational periods

before actually falling apart° Then the mean lifetime of an excited molecule

may be much greater than the time interval between collisions, and one may

correctly consider that the activated complex consists of a single molecule.

For the dissociation of diatomic molecules, one has to consider two mole-

cules (or a molecule and an atom) as being the activated complex. When

such a molecule suffers a collision_ then if it is going to fall apart at all,

it will do so in a time which is comparable to the duration of a collision. In

general, a diatornic molecule which has sufficient vibrational energy to

enable _T_ _ to dissociate Will fall apart within the period of one vibration

(2 x i0-14 sec. for 02). This is almost always a much shorter time than

the time between collisions (which even at i00 at mos. and 6000°K is still

about i0-ii sec.). Thus, a molecule flying freely between collisions has

generally no chance of dissociating, and it is a colliding pair of molecules

which constitutes the activated complex.

The formation for diatomic dissociation will then be (differing from the

expressions given in the main body of the report):

kl
A2 + M _ A2* + M (El)

k- 1

A2* + M k--_2 Products (E2)

Overall rate equation:

A 2 + M _Products (E3)

The processes in equation (El) are internal (vibrational) excitation and de-

excitation. This formulation implies that the rate of vibrational excitation

may sometimes in part determine the overall rate.

If one wants to show an activated complex, then one can re-write (E2) as

In the language of activated complex theory, this implies a transmission

coefficient of unity ia writing the equation in this way, that is all complexes

are transformed to products.

117



The steady state formulation then leads to

Rate= - d[A2] = kl k2 _A2] 2
dt k-1 + k 2

and k d
kl k2

k-l+ k 2

The condition for an "equilibrium" rate is that k_l_ _ k 2. Under these
conditions

kd kl= . k 2 = K 1 • k 2
k- 1

where K 1 is the equilibrium constant for the processes in equation (El).

Note that the overall rate coefficient is now not dependent on concentration

in either case, and that the overall rate depends on A 2 2 In the report,

the overall equilibrium rate was proportional only to A 2 (i. e. k d was

inversely proportional to A 2 which is evidently not very reasonable.
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a) Translational (T t) and Vibrational Temperatures (Tv) as a Function of Area Ratio (A/A*)
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b) Local Mass Fraction ( _ ) and Local Equilibrium Mass Fraction (0Q)
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FIG. 7
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DISTRIBUTION OF FLOW QUANTITIES IN THE UTIAS 11 in. x 15 in. HYPERSONIC

SHOCK TUNNEL PRIMARY NOZZLE USING VARIOUS ViBRATION-DISSOCIATION

NONEQUILIBRIUM COUPLING MODELS

Po = 22. 1 atm, To = 4800°K, o( o = 0. 52



c) Flow Pressure (p) and Density (2)
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e) Frozen Mach Number (Mf)
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(c) Flow pressure (p) and density (_).
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FIG. 9 (continued)
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